

Operation Manual

Astraada DRV-240 Frequency inverters

Contents

1 Safety precautions	1
1.1 Safety declaration	1
1.2 Safety level definition	1
1.3 Personnel requirements	1
1.4 Safety guidelines	2
2 Product overview	5
2.1 Product nameplate and model	5
2.2 Product specifications	5
2.3 Product ratings	8
2.4 Product heat dissipation	<u>9</u>
2.5 Product dimensions and weight	10
2.6 Product structure	11
2.7 System configuration	13
2.8 Quick startup	15
3 Mechanical installation	16
3.1 Unpacking inspection	16
3.2 Preparing	16
3.2.1 Installation environment and site	17
3.2.2 Installation direction	18
3.2.3 Installation space	18
3.3 Installation and uninstallation	19
3.3.1 Installation	20
3.3.2 Disassembly	23
4 Electrical installation	25
4.1 Insulation inspection	25
4.2 Checking compatible grounding systems	25
4.2.1 EMC filter grounding capacitor	25
4.2.2 Ground-to-phase VDR	26
4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and	
midpoint-grounded delta systems	26
4.2.4 Guidelines for installing the VFD in TT systems	27
4.2.5 Identifying grid grounding systems	28
4.2.6 Disconnecting the internal EMC filter or VDR, for frames A to E	29
4.3 Cable selection and routing	31
4.3.1 Cable selection	31
4.3.2 Cable arrangement	33

4.4 Main circuit wiring	34
4.4.1 Main circuit wiring	34
4.4.2 Main circuit terminals	34
4.4.3 Wiring procedure	37
4.5 Control circuit wiring	38
4.5.1 Control circuit wiring	38
4.5.2 Control circuit terminals	39
4.5.3 Input/output signal wiring	41
4.6 Power distribution protection	46
5 Keypad operation guidelines	48
5.1 Keypad introduction	48
5.2 Local LED keypad display and operation	48
5.2.1 Keypad panel	49
5.2.2 Keypad display	50
5.2.3 Operation procedure	51
5.3 External LED keypad display and operation	54
5.3.1 Keypad panel	55
5.3.2 Keypad display	56
5.3.3 Operation procedure	57
5.4 External LCD keypad display and operation	60
5.4.1 Keypad panel	
5.4.2 Keypad functions	62
5.4.3 Operation procedure	62
6 Commissioning	75
6.1 Motor parameter setting	76
6.1.1 Motor type selection	76
6.1.2 Rated motor parameter setting	76
6.1.3 Motor switchover	78
6.2 Parameter autotuning setting	79
6.2.1 Motor parameter autotuning	79
6.2.2 Motor inertia identifying	80
6.3 Running command selection	81
6.4 Frequency setting	
6.4.1 Combination of frequency setting source	87
6.4.2 Frequency setting method	
6.4.3 Frequency fine-tuning	
6.5 Speed control mode selection	
6.6 Torque setting method selection	
6.6.1 Torque setting method selection	
6.6.2 Method for switching between speed control and torque control	104

6.7 Start/stop settings	105
6.7.1 Start settings	105
6.7.2 Stop settings	107
6.7.3 Power-off restart	110
6.8 Control performance regulation	112
6.8.1 Space vector control performance optimization	112
6.8.2 Vector control performance optimization	119
6.9 Input and output	125
6.9.1 Digital input and output	125
6.9.2 Analog input and output terminal functions	138
6.9.3 High-speed pulse input and output terminal functions	143
6.10 RS485 communication	148
6.11 Monitoring parameters	151
6.11.1 Group P07—Human-machine interface	151
6.11.2 GroupP17—Basic status viewing	156
6.12 Protection parameter setting	161
6.12.1 Overvoltage stall protection	161
6.12.2 Current-limit protection	162
6.12.3 Frequency decrease at sudden power failure	163
6.12.4 Cooling fan control	165
6.12.5 Dynamic braking	166
6.12.6 Safe torque off	167
6.13 Typical applications	167
6.13.1 Counting	167
6.13.2 Sleep and wakeup	168
6.13.3 Switchover between FWD run and REV run	169
6.13.4 Jump frequency	171
6.13.5 Wobbling frequency	172
7 Communication	174
7.1 Standard communication interface	174
7.2 Communication data address	174
7.2.1 Function parameter address	174
7.2.2 Non-function parameter address	
7.3 Modbus networking	178
7.3.1 Network topology	179
7.3.2 RTU mode	180
7.3.3 RTU command code	183
7.3.4 Fieldbus scale	
7.3.5 Error message response	
7.3.6 Communication commissioning	189

8 Fault handling	191
8.1 Fault indication and reset	191
8.2 Faults and solutions	191
8.2.1 Common faults and solutions	192
8.2.2 Other status	201
8.3 Analysis on common faults	202
8.3.1 Motor fails to work	202
8.3.2 Motor vibrates	203
8.3.3 Overvoltage	204
8.3.4 Undervoltage	205
8.3.5 Overcurrent	206
8.3.6 Motor overheating	207
8.3.7 VFD overheating	208
8.3.8 Motor stalls during ACC	209
8.4 Countermeasures on common interference	209
8.4.1 Interference problems of meter switch and sensors	209
8.4.2 Interference on RS485 communication	211
8.4.3 Failure to stop and indicator shimmering due to motor cable coupling	212
8.4.4 Leakage current and interference on RCD	
8.4.5 Live device housing	214
9 Inspection and maintenance	215
9.1 Daily inspection and regular maintenance	215
9.2 Cooling fan replacement	
9.3 Reforming	217
Appendix A Expansion card	219
A.1 Model definition	219
A.2 Specifications	219
A.3 Protocol parameter	221
A.4 Indicator	
A.5 Expansion card installation and wiring	
A.5.1 Expansion card installation procedure	
A.5.2 Expansion card wiring	
A.6 Commissioning	
Appendix B Technical data	
B.1 Derating due to temperature	
B.2 Derating due to altitude	
B.3 Derating due to carrier frequency	
B.4 Grid specifications	
B.5 Motor connection data	
B.5.1 Motor cable length for normal operation	236

B.5.2 Motor cable length for EMC	237
Appendix C Application standards	238
C.1 List of application standards	238
C.2 CE/TUV/UL/CCS certification	238
C.3 EMC compliance declaration	239
C.4 EMC product standard	239
Appendix D Dimension drawings	240
D.1 Keypad structure	240
D.2 Product outline dimensions	241
D.3 Flange mounting dimensions	245
Appendix E Peripheral accessories	247
E.1 Cable	247
E.1.1 Power cable	247
E.1.2 Control cable	249
E.2 Breaker, fuse, and electromagnetic contactor	250
E.3 Optional accessories	251
E.3.1 Reactor	251
E.3.2 Filter	252
E.3.3 Braking component	254
E.3.4 External keypad and mounting bracket	256
E.3.5 DIN rail mounting bracket	257
E.3.6 Accessory list	257
Appendix F STO function	258
F.1 Safety standards	258
F.2 Safety function description	259
F.3 Risk assessment	260
F.4 STO wiring	260
F.5 STO function terminal description	262
F.6 STO function logic table	262
F.7 STO channel delay description	262
F.8 Acceptance test	263
Appendix G Function parameter list	266
Group P00—Basic functions	266
Group P01—Start and stop control	270
Group P02—Parameters of motor 1	275
Group P03—Vector control of motor 1	280
Group P04—V/F control of motor 1	290
Group P05—Input terminal functions	295
Group P06—Output terminal functions	301
Group P07—Human-machine interface	307

Group P08—Enhanced functions	315
Group P09—PID control	326
Group P10—Simple PLC and multi-step speed control	330
Group P11—Protection parameters	333
Group P13—SM control	339
Group P14—Serial communication	342
Group P16—Customized communication functions	347
Group P17—Status viewing	355
Group P23—Communication expansion function group 1	361
Group P24—Communication expansion function group 2	363
Group P29—Expansion card status viewing	367
Group P34—Parameters of motor 2	369
Group P35—Vector control of motor 2	374
Group P36—V/E control of motor 2	384

1 Safety

1.1 Safety declaration

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the product. Otherwise, equipment damage or physical injury or death may be caused.

We shall not be liable or responsible for any equipment damage or physical injury or death caused due to failure to follow the safety precautions.

1.2 Safety level definition

To ensure personal safety and avoid property damage, you must pay attention to the safety symbols and warnings in the manual.

Symbol	Name	Description
A		Severe personal injury or even death can result if related
77	Danger	requirements are not followed.
		Severe personal injury or even death can result if related
		requirements are not followed. As high voltage still presents
4 () 5 min	Electric	in the bus capacitor after power off, wait for at least 5
_	shock	minutes (depending on the warning symbols on the
		machine) after power off to prevent electric shock.
A		Personal injury or equipment damage can result if related
<u> </u>	Warning	requirements are not followed.
A	Electrostatic	Equipment damage or internal component damage can
discharg		result if related requirements are not followed.
Hot sides		You may get burnt if related requirements are not followed.
		Slight personal injury or equipment damage can result if
Note	Note	related requirements are not followed.

1.3 Personnel requirements

Trained and qualified professionals: People operating the equipment must have received professional electrical and safety training and obtained the certificates, and must be familiar with all steps and requirements of equipment installing, commissioning, running and maintaining and capable to prevent any emergencies according to experiences.

1.4 Safety

General principles

- Only trained and qualified professionals are allowed to carry out related operations.
- Do not perform wiring, inspection or component replacement when power supply is applied. Before performing these operations, ensure all the input power supplies have been disconnected, and wait for at least the time designated on the VFD. The minimum waiting time is listed in the following.

•	a on the vib. The minimum	waiting time is iisted in the i		
	Model	Minimum waiting time		
	1PH 220V 0.2-4kW	5 minutes		
	3PH 220V 0.2-15kW	5 minutes		
	3PH 380V 0 4-22VW	5 minutes		

 Do not modify the VFD unless authorized; otherwise fire, electric shock or other injury may result.

- The VFD cannot be used as an "emergency-stop device".
- The VFD cannot act as an emergency brake for the motor; it is a must to install a mechanical braking device.
- Prevent the screws, cables and other conductive parts from falling into the VED.

 The base may become hot when the VFD is running. Do not touch. Otherwise, you may get burnt.

The electrical parts and components inside the VFD are electrostatic sensitive.
 Take measurements to prevent electrostatic discharge when performing related operations.

Delivery

- Select appropriate tools for VFD delivery to avoid damage to the VFD, and take
 protective measures like wearing safety shoes and working uniforms to avoid
 physical injury or death.
- Protect the VFD against physical shock or vibration.
- Do not carry the VFD only by its front cover as the cover may fall off.

Installation

- Do not install the VFD on inflammables. In addition, prevent the VFD from contacting or adhering to inflammables.
- Do not install the damaged or incomplete VFD.
- Do not contact the VFD with damp objects or body parts. Otherwise, electric shock may result.

• The installation site must be away from children and other public places. For

Installation

details, see section 3.2.1 Installation environment and site.

- Connect the optional braking parts (such as braking resistors, braking units or feedback units) according to the wiring diagrams.
- As VFD leakage current caused during running may exceed 3.5mA, ground properly and ensure the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the same as that of the phase conductor.
- L1, L2, and L3 are the power input terminals, while U, V, and W are the output motor-connection terminals. Connect the input power cables and motor cables properly; otherwise, the VFD may be damaged.
- When the VFD is installed in a confined space (such as cabinet), it is necessary
 to provide protective devices (such as fireproof housing, electrical protective
 housing, mechanical protective housing, etc.) that meet the IP rating, and the
 IP rating shall comply with the relevant IEC standards and local regulations.

Commissioning

The VFD may start up by itself when power-off restart is enabled (P01.21=1).
 Do not get close to the VFD and motor.

Do not switch on or switch off the input power supplies of the VFD frequently.
 If the VFD has been stored without use for a long time, perform capacitor reforming (described in section 9.3 Reforming), inspection and pilot run for the VFD before the reuse.

Run

- Close the VFD front cover before running; otherwise, electric shock may occur.
- High voltage presents inside the VFD during running. Do not carry out any
 operation on the VFD during running except for keypad setup. The control
 terminals of the VFD form extra-low voltage (ELV) circuits. Therefore, you need
 to prevent the control terminals from connecting to accessible terminals of
 other devices.

- During driving a synchronous motor, besides above-mentioned items, the following work must be done:
 - All input power supplies have been disconnected, including the main power and control power.
 - The synchronous motor has been stopped, and the voltage on output end of the VFD is lower than 36V.
 - After the synchronous motor has stopped, wait for at least the time designated on the VFD.
 - During operation, it is a must to ensure the synchronous motor cannot run again by the action of external load; it is recommended to install an

Run

effective external braking device or cut off the direct electrical connection between the synchronous motor and the VFD.

Maintenance

- Do not perform VFD maintenance or component replacement when the power is on. Otherwise, electric shock may result.
- Keep the VFD and its parts and components away from combustible materials and ensure they have no combustible materials adhered.

 During maintenance and component replacement, take proper anti-static measures on the VFD and its internal parts.

• Do not carry out insulation voltage-endurance test on the VFD, or measure the control circuits of the VFD with a megohmmeter.

Note

• Use proper torque to tighten screws.

Disposal

• The VFD contains heavy metals. Dispose of a scrap VFD as industrial waste.

2 Product overview

2.1 Product nameplate and model

Each VFD is affixed with a nameplate containing the basic product information and, depending on the actual certification, certification marks such as the CE mark.

2.2 Product

Item		Specifications		
		AC 1PH 200V-240V		
	Input voltage (V)	AC 3PH 200V-240V		
Input		AC 3PH 380V-480V		
	Input current (A)	See section 2.3 Product ratings.		
	Input frequency (Hz)	50Hz or 60Hz; Allowed range: 47–63Hz		
	Output voltage (V)	0-Input voltage		
	Output current (A)	See section 2.3 Product ratings.		
Output	Output power (kW)	See section 2.3 Product ratings.		
	Output frequency	0.5001		
	(Hz)	0–599Hz		
	Control mode	Space voltage vector control (V/F), and sensorless		
Control		vector control (SVC)		
Control	Motor	Asynchronous motor (AM) and synchronous motor (SM)		
performance		For AMs: 1: 100 (SVC)		
	Speed ratio	For SMs: 1: 50 (SVC)		

Item		Specifications			
	Speed control accuracy	±0.2% (SVC)			
	Speed fluctuation	±0.3% (SVC)			
	Torque response	< 10ms (SVC)			
Control performance	Torque control accuracy	5% (SVC)			
	Starting torque	For AMs: 0.5Hz/200% (SVC) For SMs: 2.5 Hz/150% (SVC)			
	Overload capacity	For heavy-load models: 150%/60s, 180%/10s For light-load models: 110%/60s, 150%/10s			
	Analog input	Two analog inputs: AI1: 0-10V/0-20mA AI2: -10-10V/0-20mA Full-scale accuracy of 1%			
	Analog output	One analog output: AO1: 0–10V/0–20mA Full-scale accuracy of 1%			
	Digital input	Four regular inputs; max. frequency: 1kHz One high-speed input. Max. frequency: 50kHz Both NPN and PNP are supported, with PNP as the default. DI4 can be switched to provide the PTC function through the switch.			
External interface	Digital output	One high-speed digital output. Max frequency: 50kHz Optional standard digital output, supporting both PNP and NPN modes.			
	Relay output	One relay output RO1A: NO; RO1B: NC; RO1C: common Contact capacity: 3A/AC 250V, 1A/DC 30V			
	Type-C interface	Powered by connecting to a PC through USB, allowing quick parameter viewing and configuration through host controller software without requiring the main power supply.			
	Communication interface	RS485 communication, supporting the Modbus RTU communication protocol.			
	Keypad display	Five-digit digital tube display, with six keys			

Item		Specifications			
		-10-+50°C, no derating for light load at 40°C, no			
		derating for heavy load at 50°C			
	Running	尽Note: Refer to appendix B.1 Derating due to			
	temperature	temperature for use at heavy load above 50°C; refer to			
		section B.1 Derating due to temperature for use at light			
		load above 40°C.			
	Storage temperature	-20°C-70°C			
	Transport	-20°C-70°C			
	temperature	20 0 70 0			
Environment		For star-type grid, up to 4000m (13123ft)			
requirements		For delta-type grid, up to 2000m (6562ft)			
requirements	Altitude	Derating is not required for use up to 1000m (3281ft).			
		Above 1000m (3281ft), derate by 1% for every increase			
		of 100m (328.1ft).			
	Relative humidity	<95%RH, no condensation			
	(RH)	1997ord II, the Condensation			
	Vibration	< 0.6g			
	Pollution level	3C2, 3S2, PD2			
	Ingress protection	IP20			
	(IP) rating	11 20			
	Overvoltage category	OVC III			
	Braking unit	Standard built-in braking unit			
	Product	UL CE			
	certification*	OL CL			
	Safety function*	TUV (SIL3)			
	Mounting method	Wall mounting, DIN rail mounting, and flange mounting			
		Note: Only models in frames A and B support rail			
Other		mounting, which requires the selection of related			
		options; only models in frames C, D, and E support			
		flange mounting, which requires the selection of			
		related options.			
		220V voltage class: natural cooling for 0.75kW and			
	Cooling method	lower			
	cooming meanod	380V voltage class: natural cooling for 1.1kW and lower			
		Others: Forced air cooling			

△Note: The asterisk (*) indicates that the product is currently under certification.

2.3 Product

			Heavy load		Light load		
Product model	Output	Input	Output	Output	Input	Output	
	power	current	current	power	current	current	
AC 1PH 200V-240V							
AS240DRV20C2	0.2	3.9	1.5	0.4	5.2	2	
AS240DRV20C4	0.4	5.3	2.5	0.75	7.4	3.3	
AS240DRV20C7	0.75	8.8	4.2	1.1	11	5.1	
AS240DRV21C1	1.1	13.2	6.5	1.5	13.4	7.5	
AS240DRV21C5	1.5	14.2	7.5	2.2	18.8	9.8	
AS240DRV22C2	2.2	20.6	10	4	23.8	12.5	
AS240DRV24C0	4	32	16	-	-	-	
AC 3PH 200V-24	40V						
AS240DRV30C2	0.2	2.2	1.5	0.4	3.3	2	
AS240DRV30C4	0.4	4.1	2.5	0.75	5.6	3.3	
AS240DRV30C7	0.75	6.8	4.2	1.1	8.1	5.1	
AS240DRV31C1	1.1	10.3	6.5	1.5	11.5	7.5	
AS240DRV31C5	1.5	9.3	7.5	2.2	11.8	9.8	
AS240DRV32C2	2.2	12	10	4	13.7	12.5	
AS240DRV34C0	4	20	16	5.5	26	21	
AS240DRV35C5	5.5	21.7	20	7.5	28	26	
AS240DRV37C5	7.5	33	30	11	43	39	
AS240DRV3011	11	44	42	-	-	-	
AS240DRV3015	15	60	55	22	72	64	
AC 3PH 380V-48	80V	_					
AS240DRV40C4	0.4	2.7	1.5	0.75	3.9	2	
AS240DRV40C7	0.75	4.5	2.5	1.1	6	3.3	
AS240DRV41C1	1.1	5.8	3	1.5	6.9	3.7	
AS240DRV41C5	1.5	7.6	4.2	2.2	8.6	5.5	
AS240DRV42C2	2.2	9.62	5.5	3	10.4	7	
AS240DRV43C0	3	11.4	7.5	4	12.8	9.5	
AS240DRV44C0	4	15.3	9.5	5.5	17.2	11.5	
AS240DRV45C5	5.5	22.1	14	7.5	28.1	18	
AS240DRV47C5	7.5	25	18.5	11	26.8	21	
AS240DRV4011	11	36	25	15	46	32	
AS240DRV4015	15	46	32	18	55	38	
AS240DRV4018	18	57	38	22	68	45	
AS240DRV4022	22	62	45	30	72	58	

Note: The VFD input current is measured in cases where the input voltage is 220V/380V without additional reactors.

2.4 Product heat dissipation

Product model	Entire machine standby power consumption (W)	Entire machine full load power consumption (W)	Heat dissipation (BTU/hr)	Air flow rate (m^3/h)	Airflow rate (CFM) (ft^3/min)
AC 1PH 200V-240	V				
AS240DRV20C2	7	19	65	-	-
AS240DRV20C4	7	27	92	-	-
AS240DRV20C7	7	45	154	-	-
AS240DRV21C1	7	67	229	20	12
AS240DRV21C5	7	74	253	20	12
AS240DRV22C2	7	112	382	20	12
AS240DRV24C0	11	185	631	20	12
AC 3PH 200V-240	V				
AS240DRV30C2	7	19	65	-	-
AS240DRV30C4	7	27	92	-	-
AS240DRV30C7	7	42	143	-	-
AS240DRV31C1	7	60	205	20	12
AS240DRV31C5	7	67	229	20	12
AS240DRV32C2	7	84	287	20	12
AS240DRV34C0	11	137	467	50	30
AS240DRV35C5	11	182	621	50	30
AS240DRV37C5	14	260	887	122	72
AS240DRV3011	14	396	1351	122	72
AS240DRV3015	16	621	2119	153	90
AC 3PH 380V-480	v				
AS240DRV40C4	9	29	99	-	-
AS240DRV40C7	9	40	137	-	-
AS240DRV41C1	9	45	154	-	-
AS240DRV41C5	9	60	205	20	12
AS240DRV42C2	9	81	277	20	12
AS240DRV43C0	9	104	355	20	12
AS240DRV44C0	9	147	502	20	12
AS240DRV45C5	11	208	710	50	30
AS240DRV47C5	11	248	846	50	30

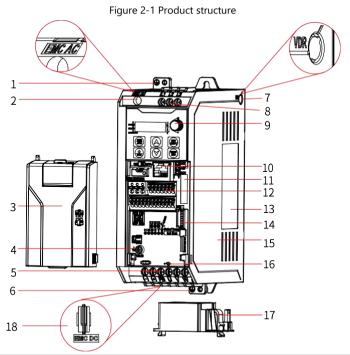
Product model	Entire machine standby power consumption (W)		Host	Air flow rate (m^3/h)	Airflow rate (CFM) (ft^3/min)
AS240DRV4011	20	335	1143	122	72
AS240DRV4015	20	468	1197	122	72
AS240DRV4018	20	503	1716	153	90
AS240DRV4022	20	577	1969	153	90

2.5 Product dimensions and

Product model	Frame	Outline dimensions	Packaging dimensions	Net weight
AC 1PH 200V-240V				
AS240DRV20C2		60 100 155/	222 22 122/	
AS240DRV20C4	Α	60×190×155/	230×90×190/	1.23
AS240DRV20C7		2.36×7.48×6.1	9.05×3.54×7.48	
AS240DRV21C1		70 100 155/	222 22 122/	
AS240DRV21C5	В	70×190×155/	230×90×190/	1.27
AS240DRV22C2		2.75×7.48×6.1	9.05×3.54×7.48	
A CO 40 D D) (0 4 CO	-	90×235×155/	278×150×245/	2.05
AS240DRV24C0	С	3.54×9.25×6.1	10.9×5.9×9.6	2.05
AC 3PH 200V-240V				
AS240DRV30C2		60 100 155/	222 22 122/	
AS240DRV30C4	Α	60×190×155/	230×90×190/	1.23
AS240DRV30C7		2.36×7.48×6.1	9.05×3.54×7.48	
AS240DRV31C1				
AS240DRV31C5	В	70×190×155/	230×90×190/	1.23
AS240DRV32C2		2.75×7.48×6.1	9.05×3.54×7.48	
AS240DRV34C0	_	90×235×155/	278×150×245/	2.05
AS240DRV35C5	С	3.54×9.25×6.1	10.9×5.9×9.6	2.05
AS240DRV37C5		130×250×185/	325×190×235/	2.55
AS240DRV3011	D	5.11×9.84×7.28	12.8×7.5×9.3	3.55
AS240DRV3015	E	160×300×190/ 6.29×11.81×7.48	413×255×300/ 16.3×10×11.8	4.90

Product model	Frame	Outline dimensions	Packaging dimensions	Net weight
AC 3PH 380V-480V				
AS240DRV40C4		60 100 155/	220 00 100/	
AS240DRV40C7	А	60×190×155/	230×90×190/	1.23
AS240DRV41C1		2.36×7.48×6.1	9.05×3.54×7.48	
AS240DRV41C5				
AS240DRV42C2	_	70×190×155/	230×90×190/	4.22
AS240DRV43C0	В	2.75×7.48×6.1	9.05×3.54×7.48	1.23
AS240DRV44C0				
AS240DRV45C5		90×235×155/	278×150×245/	2.05
AS240DRV47C5	C	3.54×9.25×6.1	10.9×5.9×9.6	2.05
AS240DRV4011	_	130×250×185/	325×190×235/	2.55
AS240DRV4015	D	5.11×9.84×7.28	12.8×7.5×9.3	3.55
AS240DRV4018	E	160×300×190/	413×255×300/	4.00
AS240DRV4022	-	6.29×11.81×7.48	16.3×10×11.8	4.90

✓Note:


- The product frames are divided into A, B, C, D, and E.
- The difference between the weight in the table and the actual weight is $\leq 3\%$.

2.6 Product structure

Warning

- The Type-C port serves as a monitoring and debugging interface.
- The external keypad cannot be used when the Type-C port is connected.

No.	Component	No.	Component	
1	Input safety protection grounding terminal	10	RJ45 network port	
2	EMC AC screw	11	Model bar code	
3	Cover 12 Control board termi		Control board terminal	
4	Signal grounding terminal (PE)	13 Nameplate		
5	Output terminal functions	14	Expansion card interface	
6	Output safety protection grounding terminal	15	Housing	
7	VDR screw	16	16 Type-C interface (control board)	
8	Input terminal functions	17	Cooling fan	
9	Potentiometer knob	18	EMC DC clip	

△Note: The positions of EMC AC screw, VDR screw, and EMC DC clip are not exactly the same for VFDs in different frames. For details, see Figure 4-1, Figure 4-2, and Figure 4-3.

2.7 System configuration

When using the VFD to drive a motor to form a control system, various electrical devices need to be installed on the input and output sides of the VFD to ensure stable system running.

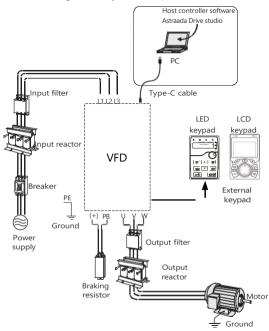


Figure 2-2 System composition

Table 2-1 System configuration

Comp	onent	Position	Description
E VIII	Breaker	Between the power supply and the VFD input side	Device for electric shock prevention and protection against short-to-ground that may cause current leakage and fire. Select residual-current circuit breakers (RCCBs) that are applicable to VFDs and can restrict high-order harmonics, and of which the rated sensitive current for one VFD is larger than 30 mA.
	Input Reactor	On the VFD input side	Accessories used to improve the power factor on the input side of the VFD, and thus restrict high-order harmonic currents.

Comp	onent	Position	Description	
	Output Reactor	Between the VFD output side and the motor, and installed near the VFD.	(Optional) Accessory used to lengthen the valid transmission distance of the VFD, which effectively restricts the transient high voltage generated during the switch-on and switch-off of the IGBT module of the VFD.	
	Input Filter	On the VFD input side	(Optional) Input filter: Accessory that restricts the electromagnetic interference generated by the	
(000)	Dutput Filter	Adjacent to the VFD output terminals	VFD and transmitted to the public grid through the power cable. Try to install the input filter near the input terminal side of the VFD. (Optional) Output filter: Accessory used to restrict interference generated in the wiring area on the output side of the VFD. All the product series can meet the conductivity and transmission requirements of IEC/EN 61800-3 C3 electrical drive systems. Optional external filters can be used to meet the conductivity and transmission requirements of IEC/EN 61800-3 C2 electrical drive systems. Note: Please comply with the technical requirements specified in the appendix of the manual for the assembly of motors, motor cables, and filters.	
	Braking resistor Host controller Software	Between the VFD main circuit terminals (+) and PB Installed on the host controller for VFD management.	Accessories used to consume the regenerative energy of the motor to reduce the DEC time. Braking unit: Already embedded (only external braking resistor required) Braking resistor: Optional and externally connected for all models Astraada Drive Studio software is used to configure and monitor the VFD. Its main functions include: Monitor multiple VFDs. Set and monitor function parameters; upload and download function parameters in	
		J. 1	batches. View the modified function codes, compare the default values, follow function codes, and	

Component	Position	Description
		View and follow state parameters
		View the real-time faults and historical faults
		Display function codes in configuration mode
		Control the start/stop and forward/reverse
		running of the device
		View oscilloscope curve, save and playback
		waveform data, operate the waveform by
		cursor, and simulate waveform data.
		You can visit our website at www.astor.com.pl
		to download the software for free.

For details about optional part model selection, see Appendix E Peripheral accessories.

2.8 Quick startup

	Task	Reference
1.	Unpacking inspection.	See section 3.1 Unpacking inspection.
2.	Check whether the VFD connected load	See section 2.1 Product nameplate and
	and power supply match.	model.
3.	Check the installation environment.	See section 3.2 Preparing.
4.	Install the VFD on the wall/in the cabinet.	See section 3.3 Installation.
5.	Wiring.	See chapter 4 Electrical installation.
6.	Commission the VFD.	See chapter 6 Commissioning.

3 Mechanical installation

3.1 Unpacking inspection

After receiving the product, perform the following steps to ensure the product use safety.

■ Check the package

Before unpacking, check whether the product package is intact—whether the package is damaged, dampened, soaked, or deformed. After unpacking, check whether the interior surface of the packing box is abnormal, for example, in wet condition.

Check the machine and parts

After unpacking, check whether the equipment enclosure is damaged or cracked, whether the parts (including the VFD and manual) inside the packing box are complete, and whether the nameplate and label on the product body are consistent with the model ordered.

3.2 Preparing

Only trained and qualified professionals are allowed to carry out the operations mentioned in this chapter. Read the following installation preparation carefully before installation to ensure smooth installation and avoid personal injury or equipment damage.

Warning

- Carry out operations according to instructions presented in section 1.4 Safety guidelines. Ensure the VFD power has been disconnected before installation.
 If the VFD has been powered on, disconnect the VFD and wait for at least the time designated on the VFD, and ensure the POWER indicator is off.
- The VFD installation must be designed and done according to applicable local laws and regulations. ASTOR does not assume any liability whatsoever for any VFD installation which breaches local laws or regulations.

3.2.1 Installation environment and site

Environment		Requirement
Temperature	C THE SHAPE	 -10-+50°C There is no sudden temperature change. When the VFD is installed in a closed space, such as control cabinet, use a cooling fan or air conditioner for temperature adjustment if necessary. When the temperature is too low, if you want to use the VFD that has been idled for a long time, install an external heating device before the use to eliminate the freeze inside the VFD. Otherwise, the VFD may be damaged.
Relative humidity (RH)		 The relative humidity (RH) of the air is less than 95%, and there is no condensation. The max. RH cannot exceed 60% in the environment where there are corrosive gases.
Altitude Height	\triangle	 Lower than 1000m When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, consult our local dealer or office for details.
Vibration	} . {	Max. vibration ACC: 5.8m/s² (0.6g)

■ Site

Site		Requirement				
	SNI23	Without electromagnetic radiation sources and direct sunlight.				
	((0,7)	Note: The VFD must be installed in a clean and well-ventilated				
	- 40	environment based on the housing IP rating.				
	588 90	Without foreign objects such as oil mist, metal powder,				
Indoor		conductive dust, and water.				
	0-0	Without radioactive, corrosive, hazard, and combustible and				
		explosive substances.				
	@ . O.	Note: Do not install the VFD onto combustible objects.				
	=======================================	With low salt content				

3.2.2 Installation direction

The VFD can be installed on a wall or in a cabinet, and it must be installed vertically. It cannot be installed in other directions such as horizontal (lying), transverse (lateral), or inverted.

Vertical installation

Horizontal installation

Transverse installation

Figure 3-1 Mounting direction

3.2.3 Installation space

3.2.3.1 Single VFD

Figure 3-2 Installation space diagram of single VFD

Table 3-1 Installation space dimensions of single VFD

Fuerra	Dimensions (mm)					
Frame	a b c d					
A, B, C, D, E	≥40	≥100	≥100	≥40		

3.2.3.2 Multiple VFDs

When installing multiple VFDs, you can install them in parallel. When you install VFDs in different sizes, align the top of each VFD before installation for the convenience of future maintenance.

Figure 3-3 Installation space diagram of multiple VFDs

✓Note: The ambient temperature for side-by-side installation must not exceed 40°C.

 Dimensions (mm)

 a
 b
 c
 d
 e

 A, B, C, D, E
 ≥40
 ≥100
 ≥40
 =0

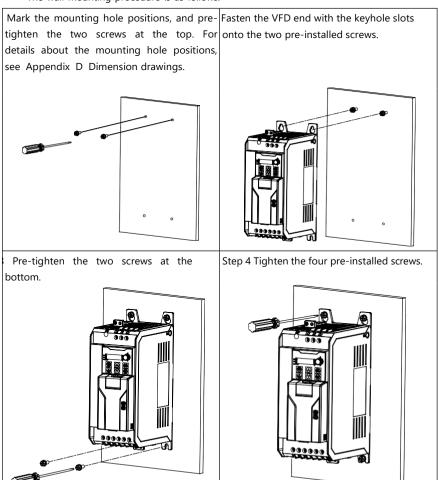
 (Heavy-load: Ambient environment ≤40°C)

Table 3-2 Installation space dimensions of multiple VFDs

3.3 Installation and uninstallation

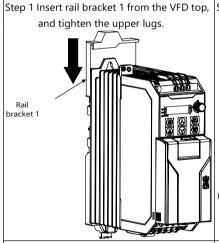
The VFD installation methods vary with the VFD frames. Please choose the appropriate installation method from the following table based on the specific model and the applicable environment. (\checkmark indicates the installation method that can be selected.)

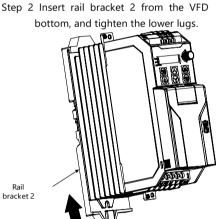
_	Mounting method		
Frame	Wall mounting	DIN rail mounting	Flange mounting
Α	V	✓	-
В	✓	✓	-
С	✓	-	✓ ·
D	√ ·	-	✓ ·
E	√	-	√ ·

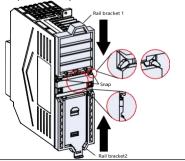

Table 3-3 Installation method selection

Note: When selecting the DIN rail mounting method for the models in frame A or B, you must select a rail mounting bracket. For details about the mounting bracket sizes and ordering codes, see appendix E.3.5 DIN rail mounting bracket. The flange mounting plate must be used for flange mounting of a VFD in frame C, D, or E.

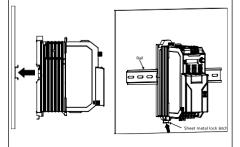
3.3.1 Installation


3.3.1.1 Wall mounting

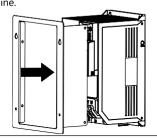

The wall mounting procedure is as follows:

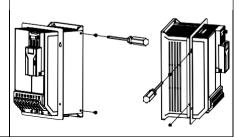

3.3.1.2 DIN rail mounting

The mounting procedure is as follows:

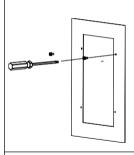


Step 3 Fasten rail brackets 1 and 2. (Ensure Step 4 Place the VFD with brackets vertically on that the snap clicks into place and the sheet metal lock is in the pull-down position.)

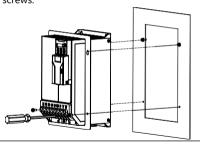

the DIN rail, and push the sheet metal lock catch upwards to make it tightly engage with the rail.

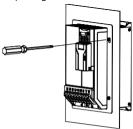


3.3.1.3 Flange mounting


The mounting procedure is as follows:

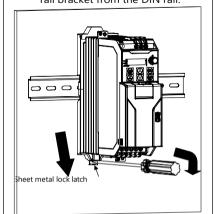
1 Insert the flange mounting bracket vertically from the front of the machine.



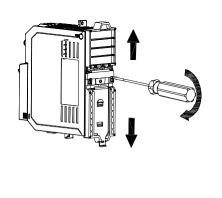

Pre-install two screws on the mounting surface.

Align the keyhole slots on the top of the flange mounting bracket with the pre-installed screws, and then install the two lower screws.

Step 5 Tighten and check all four screws to complete the installation.

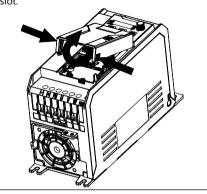

3.3.2

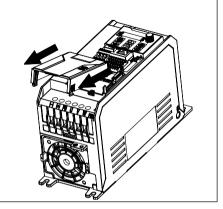
3.3.2.1 DIN rail dismounting


The dismounting procedure is as follows:

Step 1 Use a tool to pull out the sheet metal Insert a flathead screwdriver into the snap

rail bracket from the DIN rail


lock catch downwards until it is slot and rotate it 90 degrees to release the fixed. and take out the VFD with the snap on that side. Repeat the same method to remove the snap on the other side.


3.3.2.2 Cover dismounting

You need to remove the VFD cover for main circuit and control circuit wiring. The disassembly procedure is as follows:

bottom of the cover, and lift them up way. with force until the snaps detach from the slot.

Press the elastic snaps on both sides of the Step 2 Lift the cover and pull it out in tilted

4 Flectrical installation

4.1 Insulation inspection

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megohmmeter to measure the insulation resistance, on the VFD or its components. Insulation and voltage endurance tests have been performed between the main circuit and housing of each VFD before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the VFDs. If you need to conduct insulation resistance testing on the VFD. please contact us.

✓ Note: Before conducting insulation resistance testing on input and output power cables, remove the cable connection terminals from the VFD.

■ Input power cable

Check the insulation conditions of the input power cable of a VFD according to the local regulations before connecting it.

■ Motor cable

Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the VFD. Use a megohmmeter of 500V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

Note: If the motor interior is damp, the insulation resistance will decrease. If moisture is suspected, dry and re-measure the motor.

4.2 Checking compatible grounding systems

The VFD has been equipped with the embedded EMC filter as standard and therefore it can be installed on symmetric grounding systems and asymmetric grounding systems. When the VFD is used in an asymmetric grounding system, the EMC screws and clip (namely, the EMC AC screw, EMC DC screw, and EMC DC clip) must be removed to avoid the connection between the VFD internal EMC filter capacitor and the grounding potential, which may cause the VFD tripping or damage. The VFD supports the TN-S, TT, and IT grounding systems.

4.2.1 EMC filter grounding capacitor

The VFD with an internal EMC filter can be installed on a TN-S system with a symmetrical earth ground. If the VFD is installed to another grounding system, it may be necessary to

disconnect the EMC filter and the voltage dependent resistor (VDR). See sections 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems and 4.2.4 Guidelines for installing the VFD in TT systems.

Warning

Do not install a VFD with an EMC filter on a system that is not suitable for the filter. This can cause a hazard or damage to the VFD.

Note: When the internal EMC filter is disconnected, the EMC compatibility of the VFD will be significantly reduced and will not meet the EMC compatibility motor cable length requirements in appendix B.5.2 Motor cable length for EMC.

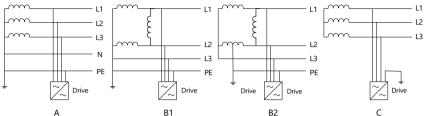
4.2.2 Ground-to-phase VDR

Most VFDs are designed to operate on three-phase power supply systems with symmetric line voltages. To meet surge immunity requirements, these VFDs are equipped with VDRs, which provide voltage surge protection as well as phase-to-phase and phase-to-ground protection. The VDR circuit is designed only for surge suppression (transient line protection) and is not intended for continuous operation.

For ungrounded supply systems, the phase-to-ground VDR can provide a continuous current path to ground. Exceeding the published phase-to-phase, phase-to-ground voltage or energy ratings may damage the VDR.

Standard VFDs with VDRs can be installed in symmetrically grounded TN-S systems. If the VFD is installed to another grounding system, it may be necessary to disconnect the the VDR. See sections 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems and 4.2.4 Guidelines for installing the VFD in TT systems.

Warning



Do not connect the phase-to-ground VDR to a system that is not suitable for the VDR when installing the VFD. Otherwise, the VDR circuit may be damaged.

4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems

The requirements for disconnecting EMC filters and VDRs, as well as additional requirements for different power systems are shown in the following.

		Symmetrical	Corner-grounded delta (B1)	IT system (floating
	F	grounding TN-S	and midpoint-grounded delta	ground or high
Frame	Frame	system, also known as	(B2) systems $\leq 600V$	resistance grounding
		grounding Y system (A)		[>30Ω]) (C)
		Do not disconnect the	Disconnect the EMC AC screw,	Disconnect the EMC AC
	A, B	EMC AC screw, EMC DC	EMC DC clip, and VDR screw.	screw, EMC DC clip,
L		clip, or VDR screw.		and VDR screw.
		Do not disconnect the	Disconnect the EMC screw and	Disconnect the EMC
l	С	EMC AC or VDR screw.	VDR screw.	screw and VDR screw.
		Do not disconnect the	Disconnect the EMC AC screw,	Disconnect the EMC AC
	D, E	EMC AC screw, EMC DC	EMC DC screw, and VDR screw.	screw, EMC DC screw,
		screw, or VDR screw.		and VDR screw.

Note: These are the EMC filter and VDR screws in the VFDs in different outline dimensions

Frame	EMC filter screw/clip	VDR screw
A, B	EMC AC screw and EMC DC clip	VDR
С	EMC AC screw	VDR
D, E Two EMC screws (including EMC AC and EMC DC)		VDR

4.2.4 Guidelines for installing the VFD in TT systems

The VFD can be installed on the TT system under the following conditions:

- 1. A residual current protection device has been installed in the power supply system.
- 2. These screws have been disconnected. Otherwise, the leakage current from the EMC filter, VDR, and capacitor can cause the residual current protection device to trip.

Frame	EMC filter screw	VDR screw
A, B	EMC AC screw, EMC DC clip	VDR
С	EMC AC screw	VDR
D, E	Two EMC screws (including EMC AC and EMC DC)	VDR
I1 I2 I2 I3 I3 I4 I4 I4 I4 I4 I4		

∠Note:

- If the EMC filter screw is disconnected, the VFD will not comply with the EMI requirements defined in the EMC classification.
- The VFD does not guarantee the proper operation of its internal ground leakage detector
- In large systems, the leakage protection device may trip unexpectedly.

4.2.5 Identifying grid grounding systems

Warning

Only qualified professionals are allowed to carry out the operations mentioned in this section. Depending on the installation location, this work can even be classified as live work. Only electrical professionals certified for the job should proceed with the work. Comply with local regulations. Ignoring these instructions could result in injury or death.

To determine the grounding system, check the power transformer connections. See the applicable electrical drawings for the building. Otherwise, measure these voltages at the switchboard and see the table to identify the grounding system type.

Input line phase-to-phase voltage (U_{L-L})

Input line L1 to-ground voltage (U_{11-G})

Input line L2 to-ground voltage (U_{L2-G})

Input line L3 to-ground voltage (U_{L3-G})

The following table shows the relationship between line-to-ground voltage and line-to-line voltage for each grounding system.

UL-L	U _{L1-G}	U _{L2-G}	U _{L3-G}	Power system type
Х	0.58 X	0.58 X	0.58 X	Symmetric grounding system (TN-S system)
Х	1.0 X	1.0 X	0	Corner-grounded delta system (asymmetric)
Х	0.866 X	0.5 X	0.5 X	Neutral-grounded delta system (asymmetrical)
х	Level changes over time	Level changes over time	Level changes over time	IT system (floating or high resistance grounding [>30 Ω]) asymmetric
х	evel changes over time	evel changes over time	evel changes over time	TT system (protective earth connection of electrical equipment is provided by local connection. A separate protective earth connection is installed at the generator)

4.2.6 Disconnecting the internal EMC filter or VDR, for frames A to E

To disconnect the internal EMC filter or VDR, if necessary, proceed as follows:

Turn off the power supply to the VFD.

To disconnect the internal EMC filter, remove the EMC screw/clip (see the following content for the screws for VFDs in different frames for details).

To disconnect the VDR remove the VDR screw

For the models with embedded EMC filter, the common-mode capacitor circuit is grounded to the heat sink through EMC screw, forming a loop path for high-frequency noise and releasing high-frequency interference; if leakage protection is applied during startup when a leakage circuit breaker has been configured, disconnect the EMC screw/clip (see section 4.2.3 When to disconnect the EMC filter or VDR: TN-S, IT, corner-grounded delta and midpoint-grounded delta systems).

Figure 4-1 EMC and VDR screw positions (for VFDs in frames A and B)

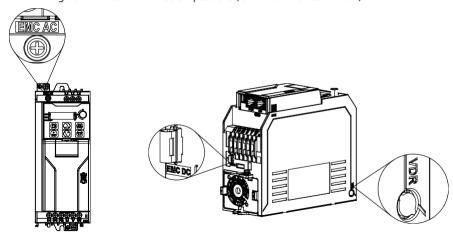
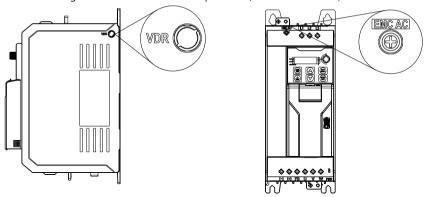



Figure 4-2 EMC and VDR screw positions (for VFDs in frame C)

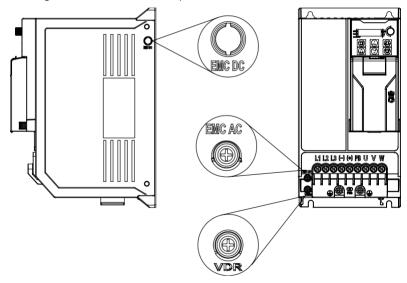


Figure 4-3 EMC and VDR screw positions (for VFDs in frames D and E)

Note:

- Do not remove EMC screws when the VFD is powered on.
- Disconnecting EMC screws will reduce the VFD electromagnetic compatibility, which
 may cause the failure to meet the EMC specification requirements.

4.3 Cable selection and

routing

■ Power cable

Power cables mainly include input power cables and motor cables. Comply with local regulations to select cables.

To meet the EMC requirements stipulated in the CE standards, it is recommended to use symmetrical shielded cables as input motor cables and power cables, as shown in Figure 4-4. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.

Figure 4-4 Symmetrical shielded cable and four-core cable

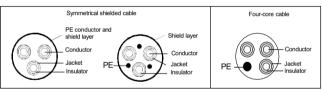
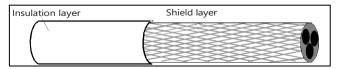
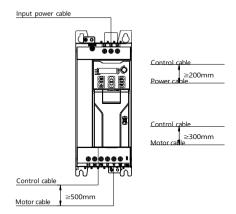



Figure 4-5 Cable cross section

∠Note:

- The input power cables and motor cables must be able to carry the corresponding load currents
- Figure 4-5 shows the minimum requirement on the motor cable of VFD. The cable contains a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.
- The cable conductor temperature limit is 70 °C. If you use a cable with the conductor temperature limit of 90 °C, the cable must comply with relevant national standards and specifications.
- If the electrical conductivity of the motor cable shield layer does not meet the requirements, a separate PE conductor must be used.
- The cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type.
- To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must be at least 1/10 of the conductivity of the phase conductor.
- This requirement can be well met by a copper or aluminum shield layer.

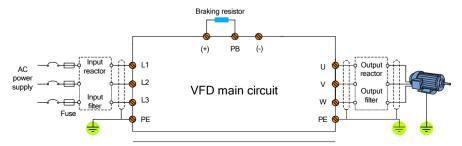

■ Control cable

Control cables mainly include analog signal control cables and digital signal control cables. Analog signal control cables use twisted double shielded cables with a separate shielded twisted pair for each signal and different ground wires for different analog signals. For digital signal control cables, a double-shielded cable is preferred, but single-shielded or unshielded twisted pairs can also be used. For details, see appendix E.1.2 Control cable.

4.3.2 Cable arrangement

The cable routing and routing distance are shown in Figure 4-6.

Figure 4-6 Cable routing distance


∕Note:

- Motor cables must be arranged away from other cables. The dv/dt of the VFD output may increase electromagnetic interference on other cables.
- Motor cables cannot be routed with other cables in parallel for long distances.
- If the control cable and power cable must cross each other, ensure that the angle between them is 90°.
- Motor cables of multiple VFDs can be routed in parallel. It is recommended to route motor cables, input power cables, and control cables in separate cable trays.
- The cable trays must be connected properly and well grounded.
- Do not rout other additional cables through the VFD.

4.4 Main circuit

wiring

Figure 4-7 Main circuit wiring diagram

Note: The fuse, input reactor, input filter, output reactor, and output filter are optional parts. For details, see Appendix E Peripheral accessories.

4.4.2 Main circuit terminals

Figure 4-8 Main circuit terminal diagram for VFDs in frame A

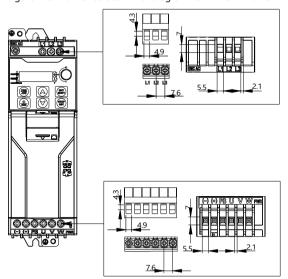


Figure 4-9 Main circuit terminal diagram for VFDs in frame B

Figure 4-10 Main circuit terminal diagram for VFDs in frame C

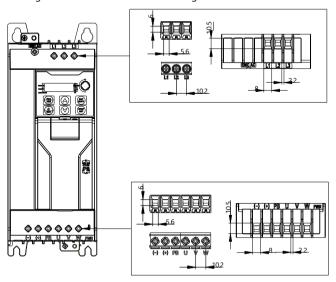


Figure 4-11 Main circuit terminal diagram for VFDs in frame D

Figure 4-12 Main circuit terminal diagram for VFDs in frame E

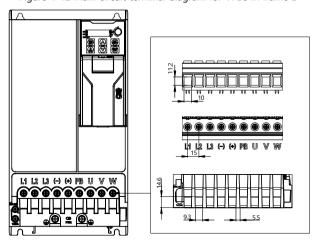
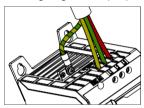


Table 4-1 Main circuit terminal definition

Terminal	Function
L1, L2, L3 (L1, L2)	3PH (or 1PH) AC input terminals, connected to the grid
U, V, W	3PH AC output terminals, connected to the motor usually
(+)	
(-)	(+) and (-) connect to the shared DC bus terminals.
РВ	PB and (+) connect to external braking resistor terminal


Terminal	Function		
	PE terminal. The PE terminals of each machine must be grounded reliably.		

Note: It is recommended to use a symmetrical motor cable. Please ground the grounding conductors in the motor cable at the VFD end and at the motor end.

4.4.3 Wiring procedure

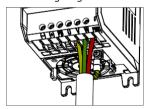

Step 1 Connect the yellow and green grounding line of the input power cable to the VFD grounding terminal, connect the 3PH input lines to the L1, L2, and L3 terminals, and tighten up.

Figure 4-13 Wiring diagram of input power cable

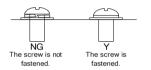
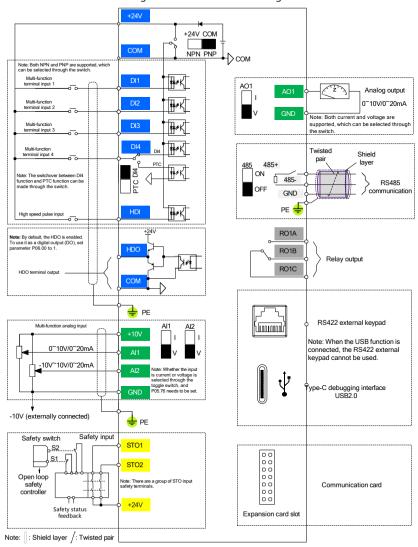

Step 2 Connect the yellow and green grounding line of the motor cable to the VFD PE terminal, connect the motor 3PH lines to the U, V and W terminals, and tighten up.

Figure 4-14 Wiring diagram of motor cable

- Step 3 Connect optional parts such as the braking resistor that carries cables to designated positions. For details, see section 4.3.1 Cable selection.
- Step 4 Fasten all the cables outside the VFD mechanically if allowed.


Figure 4-15 Screw installation diagram

4.5 Control circuit

wiring

Figure 4-16 Control circuit wiring

4.5.2 Control circuit terminals

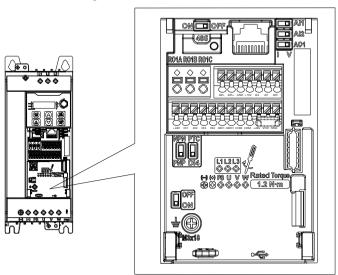
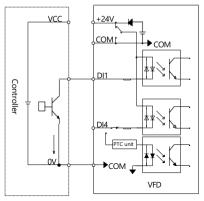


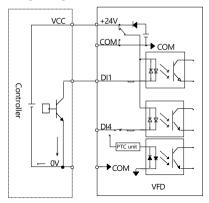
Figure 4-17 Control circuit terminals

Terminal	Function		
+10V	Locally provided +10V power supply. Max. output current: 50mA.		
GND	Power supply reference ground		
	Input range: 0–10V/0–20mA		
	Input impedance: $33k\Omega$ for voltage input or 250Ω for current input		
Al1	Whether the input is current or voltage is selected through the switch Al1		
	(I/V), and the function code P05.76 also needs to be set accordingly.		
	Accuracy: Full-scale accuracy of 1%		
	Input range: 0–10V/0–20mA		
	Input impedance: $33k\Omega$ for voltage input or 250Ω for current input		
Al2	Whether the input is current or voltage is selected through the switch Al1		
	(I/V), and the function code P05.76 also needs to be set accordingly.		
	Accuracy: Full-scale accuracy of 1%		
	Output range: 0–10V/0–20mA		
AO1	Whether the output is current or voltage is selected through the switch AO1		
	(I/V).		
	Accuracy: Full-scale accuracy of 1%		

Terminal	Function			
RO1A				
RO1B	Relay output. RO1A: NO; RO1B: NC; RO1C: common Contact capacity: 3A/AC 250V, 1A/DC 30V			
RO1C				
HDO1	Switch capacity: 50mA/30V Output frequency range: 0–50kHz When P06.00=1, it can be configured as normal DO terminal, with the push-pull output of 0V/24V, and the external power supply cannot be greater than 24V.			
485+	RS485 differential signal communication port. Use shielded twisted pairs			
485-	for standard RS485 communication interfaces. You can determine whether to connect the 120Ω terminal matching resistor of RS485 communication through the switch 485(ON/OFF).			
Туре-С	Type-C interface, which can be directly connected to a PC, using Modbus RTU as the communication protocol. When the VFD is not connected to the main power supply, it can be used to modify, save, import, and export parameters; when the VFD is connected to the main power supply, it can be used to control the VFD operation and monitor its running parameters.			
+24V	User power supply provided by the VFD. Max. output current: 100mA It can be used as an external NPN mode power input for the DI terminal (the switch must be turned to the NPN position).			
СОМ	+24V digital reference ground It can be used as an external PNP mode input (the switch must be turned to the PNP position).			
DI1-DI4 (PTC)	DI1–DI4 digital input Effective input high level range: $10-30V$ Effective input low level range: $0-5V$ Max. input frequency: $1kHz$ Programmable digital input terminals, the functions of which can be set through the related parameters Whether the NPN or PNP mode is used can be selected through the switch, and the connection to external power is supported. PTC function: DI4 can be configured with PTC overtemperature protection, which can be enabled through P05.04 and switch setting. Overtemperature resistance: $3.6k\Omega$. Recovery resistance: $1.5k\Omega$.			
HDI1	It can act as a a digital input channel, in addition to high frequency pulse input channel. It supports the switchover between NPN and PNP.			

Terminal	Function				
	Max. input frequency: 50kHz				
	Duty ratio: 30%–70%				
+24V-STO1	Safe torque off (STO) redundant input, connected to the external NC contact.				
	When the contact opens, STO acts and the VFD stops output.				
	The safety input signal cable uses the shielded cable and the length is				
+24V-STO2	controlled within 25m.				
	The STO1 and STO2 terminals are short connected to +24V by default.				
	Remove the jumper from the terminals before using the STO function.				
Communicat	ion expansion card terminals				
+24E	An external 24V sourcestion and he would far accommissation deliversing				
СОМ	An external 24V connection can be used for communication debugging.				
	Supported bus types: PROFINET, EtherCAT, EtherNet IP, Modbus TCP, and				
EC IN	EtherNet UDP				
EC IIV	EtherCAT can be only used in the IN port, while the other protocols do not				
	distinguish the direction.				
	Supported bus types: PROFINET, EtherCAT, EtherNet IP, Modbus TCP, and				
EC OUT	EtherNet UDP				
EC 001	EtherCAT can be only used in the OUT port, while the other protocols do not				
	distinguish the direction.				

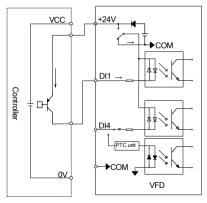

4.5.3 Input/output signal wiring

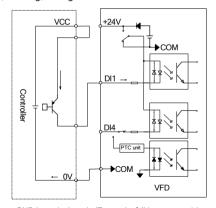

4.5.3.1 Digital input/output signal

■ Digital input signal wiring

The DI1–DI4 terminals of the VFD support NPN (sinking)/PNP (sourcing) connection, and the factory default connection is PNP (sourcing). External power wiring is supported.

Figure 4-18 NPN (sinking) wiring



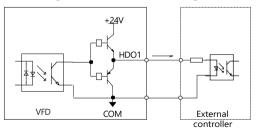


NPN (sinking) mode (Internal + 24V power supply)

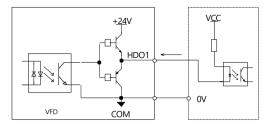
NPN (sinking) mode (External + 24V power supply)

Figure 4-19 PNP (sourcing) wiring

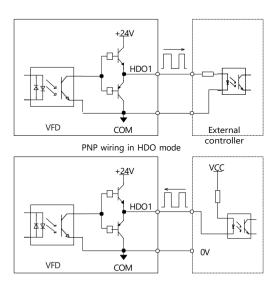
PNP (sourcing) mode (Internal + 24V power supply)


PNP (sourcing) mode (External + 24V power supply)

■ Digital output signal wiring


HDO1 can act as a digital input channel, in addition to high frequency pulse input channel. P06.00=1 can be configured as a DO output, default NPN output, reversed to PNP output by P06.09 polarity.

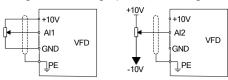
When P06.00=1, it can be configured as normal DO terminal. NPN output is used by default, which can be reversed to PNP output by setting P06.09.


Figure 4-20 HDO1 terminal wiring

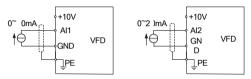
PNP wiring in DO mode

NPN wiring in DO mode

NPN wiring in HDO mode


✓Note: When HDO1 uses PNP output, ensure that the total current of the DO output at

24V and the +24V control terminal does not exceed 100mA.


4.5.3.2 Analog input signal wiring

When the analog input terminal is connected to a weak signal, it is easily interfered by external noise. Therefore, shielded twisted pair cables are generally used, and the wiring distance should be within 20m. The lead line of the shield layer should be as short as possible and needs to be fixed to the VFD signal grounding \bigoplus with screws, as shown in Figure 4-21.

Figure 4-21 Analog input terminal wiring

Analog input of voltage

Analog input of current

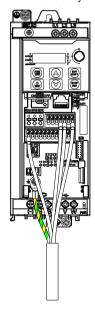
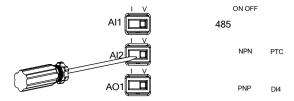
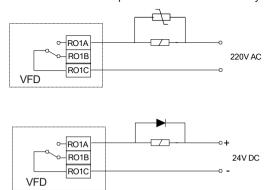



Figure 4-22 PE shield layer wiring

∠Note:

- When selecting current signal input for Al1 or Al2, use the screwdriver to turn the Al1 or Al2 switch to the "I" side.
- When selecting current signal output for AO1, use the screwdriver to turn the AO1 switch to the "I" side.



In some cases where the analog signal is severely disturbed, a filtering capacitor or magnetic ring needs to be installed on the analog signal source side. At least 3 turns are required to pass through the same phase.

4.5.3.3 Relay output wiring

Since inductive loads (relays, contactors, and motors) can cause voltage transients when the power is off, it is necessary to add protective devices such as VDRs or diodes close to the inductive load ends. Do not add protective devices at the relay output ends.

4.6 Power distribution

Warning

Do not connect any power source to the VFD output terminals U, V and W. The voltage applied to the motor cable may cause permanent damage to the VFD.

Power cable and VFD protection

In case of short circuit, the fuse protects input power cables to avoid damage to the VFD; if internal short-circuit occurs to the VFD, it can protect neighboring equipment from being damaged. Figure 4-23 shows the wiring.

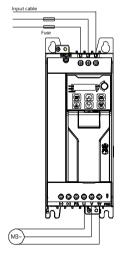


Figure 4-23 Fuse configuration

✓ Note: Select the fuse according to section E.2 Breaker, fuse, and electromagnetic contactor.

Motor and motor cable short-circuit protection

If the motor cable is selected based on VFD rated current, the VFD is able to protect the motor cable and motor without other protective devices during short circuit.

Note: If the VFD is connected to multiple motors, use a separated thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

■ Motor thermal overload protection

Once overload is detected, the power supply must be cut off. The VFD is equipped with the motor thermal overload protection function, which can block output and cut off the current (if necessary) to protect the motor.

Bypass connection protection

In some critical scenarios, the power/variable frequency conversion circuit needs to be configured to ensure proper operation of the system when a fault occurs to the VFD.

In some special scenarios, such as in soft startup, power-frequency running is directly performed after the startup, which requires bypass connection.

If VFD status needs to be switched frequently, you can use the switch which carries mechanical interlock or a contactor to ensure motor terminals are not connected to input power cables and VFD output ends simultaneously.

5 Keypad operation guidelines

5.1 Keypad introduction

The VFD is embedded with a LED keypad as a standard configuration part. You can use the keypad to control the start and stop, read status data, and set parameters of the VFD. You can also choose an external LED keypad or LCD keypad. The LCD keypad supports multi-language display and 10-line high-definition display. Its overall size is the same as the LED keypad. Both the external LED keypad and LCD keypad support the parameter copy function.

∕Note:

- For mounting the keypad externally (including LED and LCD keypads), use a standard RJ45 network cable as the extension cable. Mount the keypad on the front panel of the cabinet using M3 screws or an optional keypad bracket.
- When the external keypad is active, the built-in LED keypad remains unaffected, and both can be used simultaneously.

5.2 Local LED keypad display and operation

The local LED keypad consists mainly of status indicators, LED digital tube display, and keys.

5.2.1 Keypad panel

5.2.1.1 Status

Indicator	Status		Description	
	ON	The VFD is running.		
RUN/TUNE	■ Blink	The VFD is in parameter autotuning.		
	Off	The VFD i	s stopped.	
FWD/REV	ON	The VFD runs reversely.		
I VVD/ICEV	☐ Off	The VFD runs forward.		
	■ ON	The VFD ເ	uses communication as the	
	- ON	comman	d running channel.	
LOCAL/REMOT	■ Blink	The VFD	uses terminal as the command	
LOCAL/ILLIVIOT	DIIIIK	running c	hannel.	
	□ Off	The VFD uses keypad as the command		
	U OII	running channel.		
RUN/TUNE	On, displaying the fault	The VFD is in fault state.		
FWD/REV	code			
	Blinking at the same	The VFD is in alarm state.		
LOCAL/REMOT	time	THE VED IS III didiffi state.		
	A unit indicator that is on indicates the unit currently displayed on the			
	keypad.			
	-595.6- A - % -	Hz	Frequency unit	
Unit indicator	15 - RFM - A - % -	RPM	Rotation speed unit	
Offic indicator	162 - 87M - 4 - 5 - V	Α	Current unit	
	-8FM	%	Percentage	
	870 A %	V	Voltage unit	

Note: The unit indicator blinking and turning-on are generally used to distinguish different stop and running parameter display.

5.2.1.2 Display area

The display area displays a 5-digit value, including fault alarm code, set frequency, output frequency, and functional status data.

Display	Means	Display	Means	Display	Means	Display	Means
8	0	8	1	8	2	8	3
8	4	8	5	8	6	8	7
8	8	8	9	8	Α	8	b
8	С	8	d	8	E	8	F
8	Н	8	I	8	L	8	N
8	n	8	0	8	Р	8	r
8	S	8	t	8	U	8	v
		8	-				

5.2.1.3 Key

	Key	Function				
	Programming/	Press it to enter or exit level-1 menus or delete a parameter.				
PRG	Multifunction	Press and hold it (at least 1s) to implement the function defined				
	shortcut key	by the ones place of P07.02, which is jogging by default.				
		Press it to enter menus in cascading mode or confirm the setting				
		of a parameter.				
ENT	onfirmation/	Press it to select display parameters in the interface for the VFD				
SHIFT	Shifting key	in stopped or running state.				
		Press and hold it (at least 1s) or to select digits to change during				
		parameter setting.				
	Up key	Press it to increase data or move upward.				
	Down key	Press it to decrease data or move downward.				
		Press it to run or perform autotuning under keypad operation				
RUN	Run key	mode.				
	Stan /	P07.04 specifies the validity of the key function.				
STOP RST	Stop/	Press it to stop running or autotuning in running state.				
	Reset key	Press it to reset in fault alarm state.				
	Potentiometer	Level LED beyond a startion start that is A12				
	(AI3)	Local LED keypad potentiometer, that is, Al3.				

5.2.2 Keypad display

The keypad display content varies under different states. The following describes the keypad display content under different states.

Figure 5- 4 Status homepage display

Stopped-state homepage

Running-state homepage

Fault state homepage

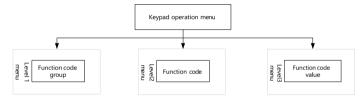
5.2.2.1 Displaying stopped-state parameters

When the VFD is in stopped state, and the keypad is not in the function code viewing or editing state, the keypad displays stopped-state parameters. By setting P07.08, you can select different stopped-state parameters. Press ENT/SHIFT to switch the parameters.

5.2.2.2 Displaying running-state parameters

When the VFD is in running state, and the keypad is not in the function code viewing or editing state, the keypad displays running-state parameters. By setting P07.05 and P07.06, you can select different running-state parameters. Press ENT/SHIFT to switch the parameters.

5.2.2.3 Fault display


When the VFD is in fault state, and the keypad is not in the function code viewing or editing state, the keypad displays the fault code in blinking way. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands. If the fault persists, the fault state and fault code display are kept.

When the VFD is in fault display state, and the keypad is in the function code viewing or editing state, the keypad automatically returns to the fault state display if there is no operation within 20s. When there is no fault with the VFD, after entering the third-level menu of changing a function code with the attribute " \bigcirc ", the value of the function code will be displayed continuously. In other cases, if there is no operation on the keypad within 1 minute, the keypad will automatically return to the stopped-state or running-state parameter display from the function code viewing or editing state.

5.2.3 Operation procedure

5.2.3.1 Modifying function parameters

The keypad contains three levels of menus according to operation editing settings.

When the VFD is in stopped, running, or fault display state:

Press PRG/JOG to enter the level-one menu (if a user password has been set, see the description of P07.00).

Under the level-two menu, press ENT/SHIFT to enter the next-level menu.

Under the level-three menu, press ENT/SHIFT to save the current function code value and enter the level-two menu of the next function code.

Note: Under various levels of menus, press PRG/JOG to return to the previous level of menu, press ⊚ or ⊚ to increase or decrease the value of the current blinking bit, and press and hold ENT/SHIFT to switch the blinking bit rightward in circular mode.

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

It is read only. Read-only parameters include actual detection parameters and running record parameters.

It cannot be modified in running state and can be modified only in stopped state.

The following takes P03.20 as an example to describe how to modify a function parameter in the stopped-state parameter display interface:

Stopped-state parameter display

REVITAND

REV

Figure 5-4 Modifying a parameter

Note: When P00.18 is set to 3, any function code value does not blink, and any function code value cannot be modified.

5.2.3.2 Setting a password for the VFD

The VFD provides the user password protection function. When P07.00 is set to a non-zero value, the function code editing state is exited, and password protection will take effect within one minute. After the password takes effect, when the VFD is in the stopped, running, or fault display state, you need to type the user password after pressing the PRG/JOG key so as to enter the function code viewing and editing state.

The following takes setting the user password 10001 as an example to describe how to set a password for the VFD in the stopped-state parameter display interface:

Stopped-state parameter display

RANTIAN

RANTIA

Figure 5-5 Setting a password

5.2.3.3 Viewing function parameters

The VFD provides the status viewing function. The following describes how to view function parameters in the stopped-state parameter display interface when the password is 10001:

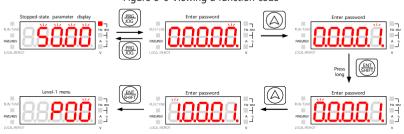


Figure 5-6 Viewing a function code

5.3 External LED keypad display and operation

The external LED keypad consists of three main parts: status indicators, digital display area, and keys. A standard RJ45 network cable is required as an extension cable for the keypad. The external LED keypad is the same as the built-in LED keypad in terms of main display and operation, but it has slight differences in the status indicators and keys.

5.3.1 Keypad

5.3.1.1 Status

Indicator	Status		Description		
	ON	The VFD is running.			
RUN/TUNE	S Blink	The VFD is in parameter autotuning.			
	Off	The VFD is stopped.			
FWD/REV	ON	The VFD runs reversely.			
FVVD/REV	Ooff	The VFD runs forward.			
	ON	The VFD use	s communication as the command		
	ON	running cha	innel.		
LOCAL/REMOT	Rlink	The VFD use	s terminal as the command		
LOCAL/ILLIVIOT	Dillik	running cha	nnel.		
	Off	The VFD uses keypad as the command running			
	0 011	channel.			
	ON	The VFD is in fault state.			
TRIP	Blink	The VFD is ir	n alarm state.		
	O Off	The VFD is in normal state.			
	A unit indicator that is on indicates the unit currently displayed on the				
	keypad.				
	16Z - RDNAP A - % - V	Hz	Frequency unit		
Unit indicator	RPM-	RPM	Rotation speed unit		
	157 - RPA/F	А	Current unit		
	16Z	%	Percentage		
	10Z + RPN/4 A = %	V	Voltage unit		

5.3.1.2 Display area

The LED keypad and local LED keypad are the same in the digital display. For details, see section 5.2.1.2 Display area.

5.3.1.3 Key

	Key	Function
PRG ESC	Programming key	Press it to enter or exit level-1 menus or delete a parameter.
DATA ENT	Confirmation key	Press it to enter menus in cascading mode or confirm the setting of a parameter.

Key		Function
	Up key	Press it to increase data or move upward.
	Down key	Press it to decrease data or move downward.
SHIFT	Shifting key	Press it to select display parameters rightward in the interface for the product in stopped or running state or to select digits to change during parameter setting.
RUN (Run key	Press it to run or perform autotuning under keypad operation mode.
STOP	Stop/ Reset key	P07.04 specifies the validity of the key function. Press it to stop running or autotuning in running state. Press it to reset in fault alarm state.
	Digital potentiometer	See P08.44 for the digital potentiometer function.

5.3.2 Keypad display

There are three display states: stopped-state parameter display, running-state parameter display, and faulty display.

Figure 5-6 Status homepage display

Running-state parameter display

Fault-state display

5.3.2.1 Displaying stopped-state parameters

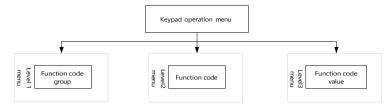
When the VFD is in stopped state, and the keypad is not in the function code viewing or

editing state, the keypad displays stopped-state parameters. By setting P07.08, you can select different stopped-state parameters, and press SHIFT to switch the parameters.

5.3.2.2 Displaying running-state parameters

When the VFD is in running state, and the keypad is not in the function code viewing or editing state, the keypad displays running-state parameters. By setting P07.05 and P07.06, you can select different running-state parameters, and press SHIFT to switch the parameters.

5.3.2.3 Fault display


When the VFD is in fault state, and the keypad is not in the function code viewing or editing state, the keypad displays the fault code in blinking way. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands. If the fault persists, the fault state and fault code display are kept.

When the VFD is in fault display state, and the keypad is in the function code viewing or editing state, the keypad automatically returns to the fault state display if there is no operation within 20s. When there is no fault with the VFD, after entering the third-level menu of changing a function code with the attribute "•", the value of the function code will be displayed continuously. In other cases, if there is no operation on the keypad within 1 minute, the keypad will automatically return to the stopped-state or running-state parameter display from the function code viewing or editing state.

5.3.3 Operation procedure

5.3.3.1 Modifying function parameters

The VFD provides three levels of menus, including:

When the VFD is in stopped, running, or fault display state:

Press PRG/ESC to enter the level-one menu (if a user password has been set, see the description of P07.00).

Under the level-two menu, press DATA/ENT to enter the next-level menu.

Under the level-three menu, press DATA/ENT to save the current function code value and enter the level-two menu of the next function code

Note: Under various levels of menus, press PRG/ESC to return to the previous level of menu, press A or ♥ to increase or decrease the value of the blinking bit, and press SHIFT to switch the blinking bit rightward in circular mode.

If you enter the level-3 menu but the parameter does not have a digit blinking, the parameter cannot be modified due to either of the following reasons:

It is read only. Read-only parameters include actual detection parameters and running record parameters.

It cannot be modified in running state and can be modified only in stopped state.

Example: Change the value of P00.01 from 0 to 1.

Stopped-state parameter display

Level-1 menu

Level-3 menu

Level-3 menu

Level-3 menu

Level-3 menu

Level-2 menu

Level-2 menu

Level-2 menu

Reprinter receive (COL/MINIOT 199

Level-3 menu

Leve

Figure 5-7 Modifying a parameter

5.3.3.2 Setting a password for the VFD

The VFD provides the user password protection function. When P07.00 is set to a non-zero value, the function code editing state is exited, and password protection will take effect within one minute. After the password takes effect, when the VFD is in the stopped, running, or fault display state, you need to type the user password after pressing the PRG/ESC key so as to enter the function code viewing and editing state.

The following takes setting the user password 10001 as an example to describe how to set a password for the VFD in the stopped-state parameter display interface.

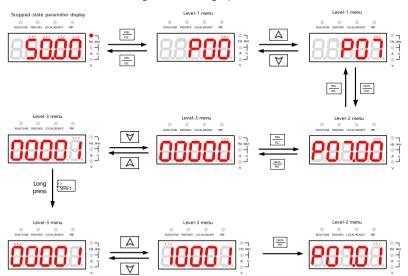


Figure 5-8 Setting a password

5.3.3.3 Viewing function parameters

The VFD provides the status viewing function. The following describes how to view function parameters in the stopped-state parameter display interface when the password is 10001.

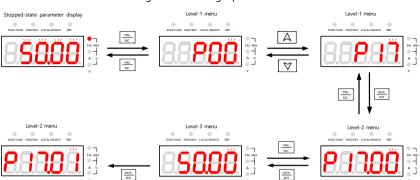
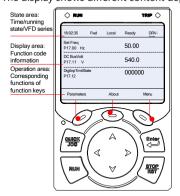
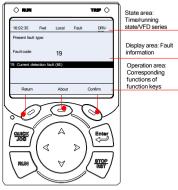


Figure 5-9 Viewing a parameter

5.4 External LCD keypad display and operation

The VFD supports an optional external LCD keypad, through which various functions can be realized, such as: controlling the start and stop, reading status data, setting parameters, and copying parameters of the VFD.


5.4.1 Keypad panel


5.4.1.1 Status indicator

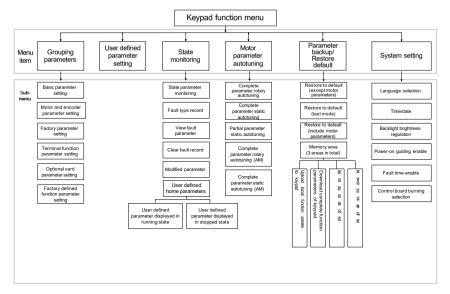
Indicator	Status	Description		
	♦ ON	The VFD is running.		
RUN	◆ Blink	The VFD is in parameter autotuning.		
	♦ Off	The VFD is stopped.		
	◆ ON	The VFD is in fault state.		
TRIP	⋘ Blink	The VFD is in alarm state.		
	♦ Off	The VFD is in normal state.		
	• ON	The displayed state varies depending on the short-cut		
QUICK/JOG	Blink	key function. For details, see the definition of		
	Off	QUICK/JOG.		

5.4.1.2 Display screen

The display shows different content depending on the operating scenario.

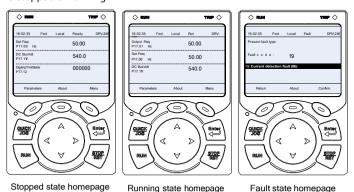
Example of parameters displayed in stopped state

Example of parameters displayed in fault state


5.4.1.3 Key

Key		Function
•	Function key	Press it to display the function on the corresponding page

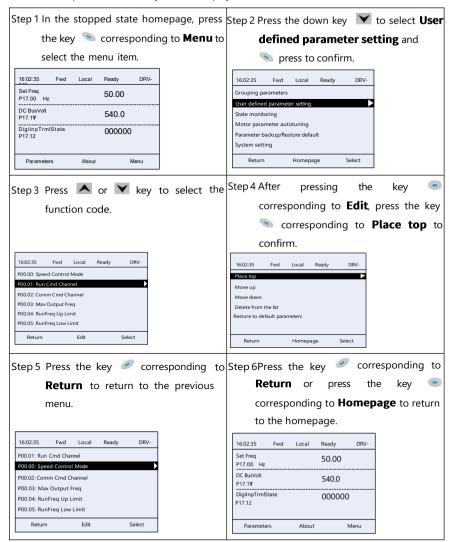
Key		Function
, ne	y	
		position.
QUICK	Short-cut key	The ones place of P07.02 defines the key function, which is
		jogging by default and can be redefined. For details, see
		the description of P07.02.
Enter	Confirmation key	The function of this key varies depending on the menu,
		such as confirming parameter settings, selecting
		parameters, or entering a sub-menu.
RUN	Run key	Press it to run or perform autotuning under keypad
		operation mode.
STOP RST	Stop/Reset key	The function code P07.04 specifies the validity of the key
		function. Press it to stop running or autotuning in running
		state. Press it to reset in fault alarm state.
*	Direction key	The function of the direction key varies with interfaces.
		Up key 🔥 Press it to move the item up or increase the
		value.
		Down key ▼: Press it to move the item down or decrease
		the value.
		Left key ≤ : Press it to switch the page, move the cursor
		to the left, or return to the previous menu.
		Right key : Press it to switch the page, move the cursor
		to the right, or enter the next menu.


Note: In general, you can press or or to enter the current cursor-lighted menu; you can press or to return to the previous menu. In the following, take
or as an example to enter the present menu or return to the previous menu.

5.4.2 Keypad

5.4.3 Operation procedure

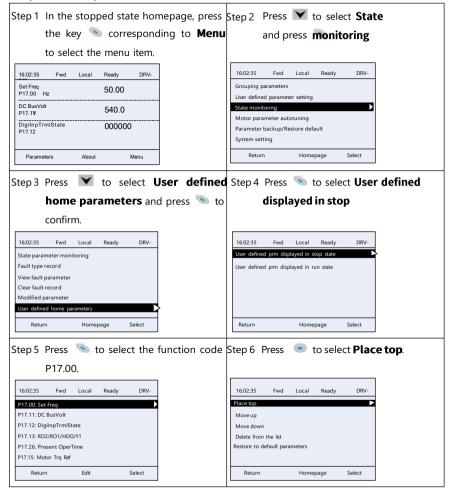
You can operate the VFD through the keypad homepage **Menu** regardless of whether the VFD is stopped or running.



Once a fault is detected, the keypad displays the fault code and fault information with the indicator on the keypad turning on. You can perform fault reset by using the STOP/RST key, control terminals, or communication commands.

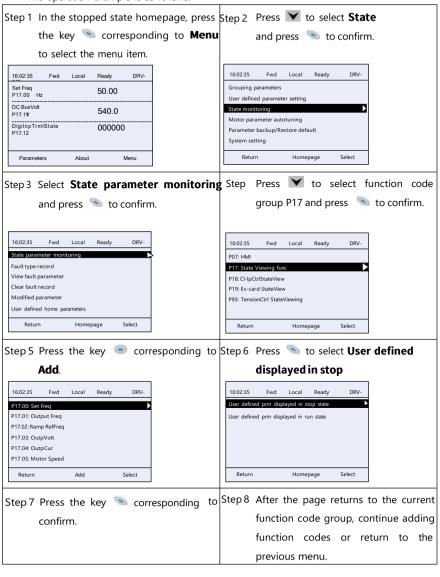
5.4.3.1 Entering/Exiting menus

The following figures show how to enter/exit menu in the stopped state.


Note: Limited by the keypad display area, items can be displayed by multiple pages.
You can press the down key ▼ to display full items.

5.4.3.2 Editing the parameter list

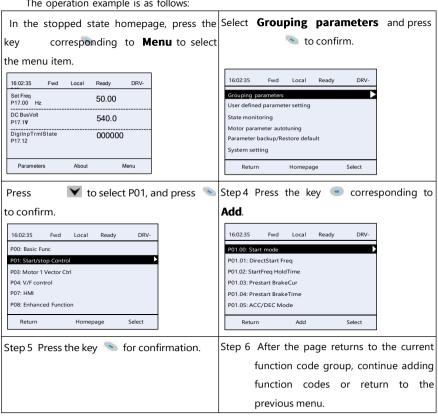
You can edit the user-defined parameter list (in the stopped state or running state), and the editing operations include **Place top**, **Move up**, **Move down**, **Delete from the list**, and **Restore to default parameters**.

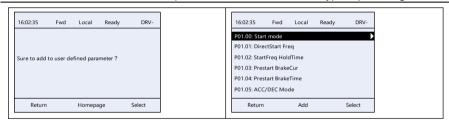

The operation example is as follows:



5.4.3.3 Adding parameters

Parameter list displayed in the stopped/running


The operation example is as follows:

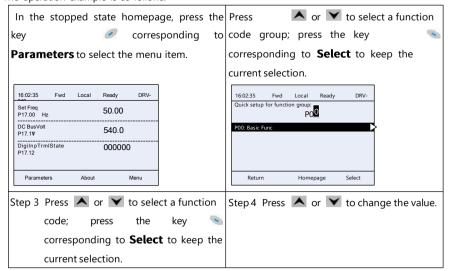


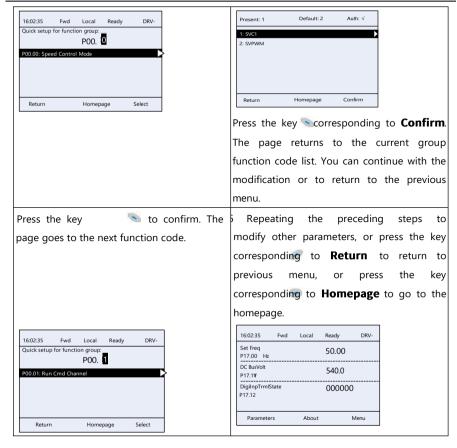
User defined parameter list

The operation example is as follows:

5.4.3.4 Modifying parameters

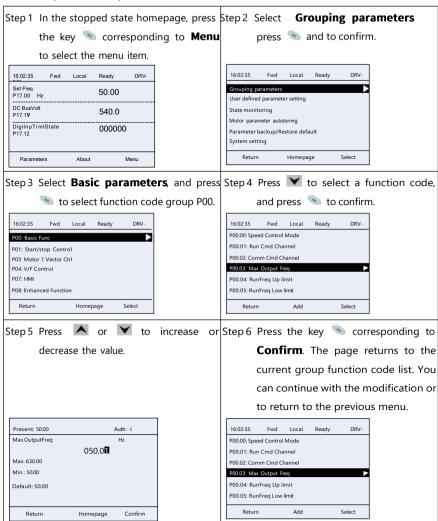
You can quickly modify the parameter value through **Parameters** on the homepage in the stopped/running state, or through **Menu** > **Grouping Parameters** or **User defined parameter setting**.

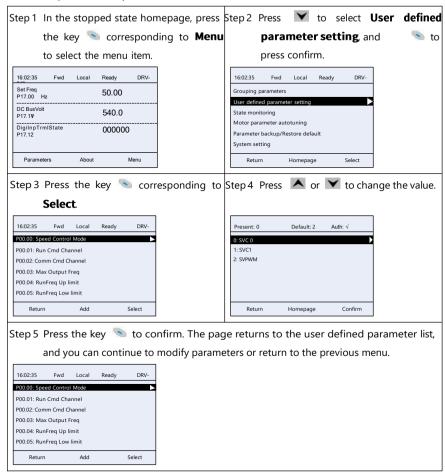

In parameter value modification interface, **Authority** on the top right indicates whether the parameter can be modified.


"\sigma": It indicates that the value of the parameter can be modified under current VFD state.

"x": It indicates that the value of the parameter cannot be modified under current VFD state

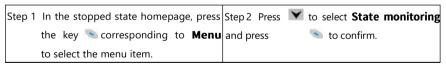
Quick parameter modification

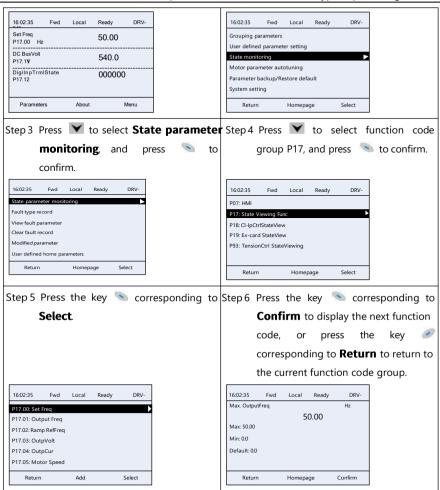

The operation example is as follows:


Grouping parameters

The operation example is as follows:

User defined parameter setting

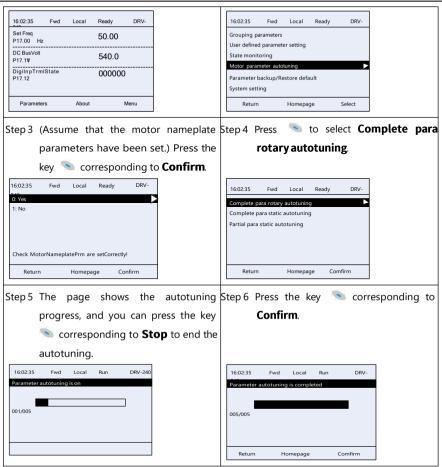

The operation example is as follows:



5.4.3.5 Viewing parameters

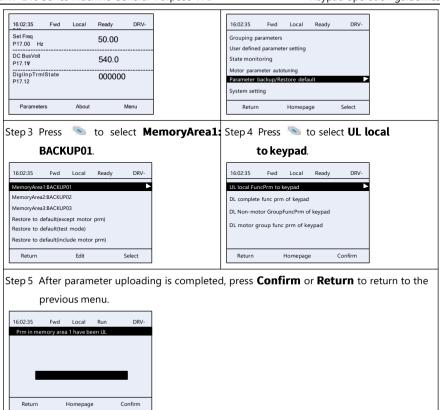
You can know the VFD state through viewing related parameters.

The operation example is as follows:



5.4.3.6 Motor parameter

autotuning


5.4.3.7 Backing up parameters

The keypad provides three different storage areas for parameter backup, and each storage area can save the parameters of one VFD, namely it can save parameters of three VFDs in total

The operation example is as follows:

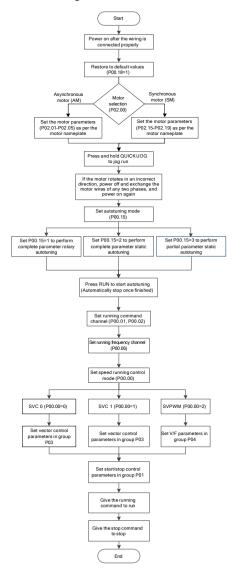
Step 1 In the stopped state homepage, press the key corresponding to **Menu** to select the menu item.

Step 2 Press to select **Parameter**backup/Restore default, and press

5.4.3.8 System setup

You can set keypad language, time/date, backlight brightness, backlight time and restore parameters.

✓ Note: The keypad time/date needs to be reset after power off.


The operation example is as follows:

6 Commissioning

The simplified VFD commissioning flowchart is as follows.

6.1 Motor parameter setting

The product supports the control of three-phase AC asynchronous motors and permanent magnet synchronous motors. The VFD supports the setting of two groups of motor parameters. Motor 1 corresponds to Group P02—Parameters of motor 1, and motor 2 corresponds to Group P34—Parameters of motor 2. Switching between the two sets of motor parameters can be achieved through multifunctional digital input terminals or communication methods.

6.1.1 Motor type selection

You can select the motor type by setting P02.00.

Functio n	Name	Default	Setting range	Description
P02.00	Type of motor	0	0–1	0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor
P34.00	Type of motor	0	0–1	Asynchronous motor (AM) Permanent magnet synchronous motor

[△]Note: The types of motors that are driven at the same type must be the same.

6.1.2 Rated motor parameter setting

Set the rated parameters of three-phase AC asynchronous motors according to the motor nameplate.

P02.01–P02.05 are used to set parameters of AM 1, and P34.01–P34.05 are used to set parameters of AM 2.

Functio n	Name	Default	Setting range	Description
P02.01	Rated power of AM 1	Model depended	0.1–3000.0kW	-
P02.02	Rated frequency of AM 1	50.00Hz	0.01Hz-P00.03	P00.03 specifies the max. output frequency.
P02.03	Rated speed of AM 1	Model depended	1–60000Rpm	-
P02.04	Rated voltage of AM 1	Model depended	0–1200V	-
P02.05	Rated current of AM 1	Model depended	0.08-600.00A	-

Functio n	Name	Default	Setting range	Description
P34.01	Rated power of AM 2	Model depended	0.1–3000.0kW	-
P34.02	Rated frequency of AM 2	50.00Hz	0.01Hz-P00.03	P00.03 specifies the max. output frequency.
P34.03	Rated speed of AM 2	Model depended	1–60000Rpm	-
P34.04	Rated voltage of AM 2	Model depended	0-1200V	-
P34.05	Rated current of AM 2	Model depended	0.08-600.0A	-

Set the rated parameters of three-phase permanent magnetic synchronous motors according to the motor nameplate.

P02.15–P02.19 are used to set parameters of SM 1, and P34.15–P34.19 are used to set parameters of SM 2.

Functio n	Name	Default	Setting range	Description
P02.15	Rated power of SM 1	Model depended	0.1–3000.0kW	-
P02.16	Rated frequency of SM 1	50.00Hz	0.01Hz-P00.03	P00.03 specifies the max. output frequency.
P02.17	Number of pole pairs of SM 1	2	1–128	-
P02.18	Rated voltage of SM 1	Model depended	0-1200V	-
P02.19	Rated current of SM 1	Model depended	0.08-600.00A	-
P34.15	Rated power of SM 2	Model depended	0.1–3000.0kW	-
P34.16	d frequency of SM 2	50.00Hz	0.01Hz-P00.03	P00.03 specifies the max. output frequency.
P34.17	Number of pole pairs of SM 2	2	1–128	-
P34.18	Rated voltage of SM 2	Model depended	0-1200V	-

Functio n	Name	Default	Settingrange	Description
P34.19	Rated current of SM 2	Model depended	0.08-600.0A	-

6.1.3 Motor switchover

Set P05.01–P05.08, P05.11, or P08.31 to switch between two sets of motor parameters. There are two switching methods.

$\label{lem:method_loss} \textbf{Method_loss} \textbf{Switching through multifunction digital input terminal function} \\ \textbf{setting}$

Function code	Name	Default	Settingrange	Description
		1		32: Motor switchover
		4		Note: DI5−DI8 are virtual
	DI1-DI8	7		terminals enabled by P05.16 and
P05.01-	terminal	0		can only be modified through
P05.08	function	0		communication. For
	selection	0	0–95	Modbus/Modbus TCP
		0		communication, the virtual
		0		terminal address is 0x200A. For
				other communication protocols,
P05.11	Function of HDI1	0		see the PZD receiving function
				code options.

Method 2 Switch through communication

Set the ones place of P08.31 to a value greater than zero, and select any channel to switch between motor 1 and motor 2. For example, during Modbus/Modbus TCP communication, it is switched by bit 0 of address 2009H. For other communication methods, see their corresponding control words.

Functio n	Name	Default	Setting range	Description
P08.31	Motor switchover selection	0x00	0x00-0x14	Ones place: Switchover channel 0: Terminal 1: Modbus/Modbus TCP communication 2: Reserved 3: Ethernet 4: EtherCAT/PROFINET/EtherNet

Functio n	Name	Default	Setting range	Description
				IP communication Tens place: indicates whether to enable switchover during running 0: Disable
				1: Enable

6.2 Parameter autotuning setting

To improve motor control effect, you are recommended to set motor rated parameters according to the motor nameplate after the first power on, and then conduct parameter autotuning. The VFD parameter autotuning includes motor parameter autotuning and motor inertia autotuning. You can select an autotuning mode based on actual conditions.

6.2.1 Motor parameter autotuning

Motor parameters have a significant impact on the calculation of the control model, especially in the case of vector control, which requires motor parameter autotuning first.

After setting motor parameters, you can set P00.15 to select the autotuning method. The setting procedure is as follows:

- Step 1 Set P00.01 to 0 to select the keypad.
- Step 2 Set P00.15 to select one method from the three motor parameter autotuning methods. Set P00.15 to a value greater than 0 and press ENT/SHIFT for confirmation. Then the keypad displays "-TUN-".
- Step 3 Press RUN to give the start command. The VFD enters parameter autotuning, during which the autotuning steps are displayed. For example, at autotuning step 1, the keypad displays "TUN-1". Once the autotuning is complete, the keypad displays "-End-".

Functio n	Name	Default	Setting range	Description
P00.15	Motor parameter autotuning	0	0–3	0: No operation 1: Complete parameter rotary autotuning 2: Complete parameter static autotuning 3: Partial parameter static autotuning

✓Note:

- When P00.15 is set to 1, disconnect the motor from the load to put the motor in static and no-load state
- When P00.15 is set to 2 or 3, there is no need to disconnect the motor from the load.
- Motor autotuning can be carried out on the present motor only. If you need to perform autotuning on the other motor, switch the motor first.

Table 6-1 Motor parameters obtain	ed in different autotuning methods
-----------------------------------	------------------------------------

Setting		Autotuning parameters						
of	AM 1	AM 2	SM1	SM 2				
1	P02.06-P02.14	P34.06-P34.14	P02.20-P02.23	P34.20-P34.23				
2	P02.06-P02.10	P34.06-P34.10	B00 00 B00 00	B2430 B2432				
3	P02.06-P02.08	P34.06-P34.08	P02.20-P02.22	P34.20-P34.22				

✓ Note: The synchronous motor back-EMF constant P02.23/P34.23 can also be calculated based on the parameters on the motor nameplate, and there are three calculation methods.

Method 1: If the back-EMF coefficient K_e is marked on the nameplate, the calculation is as follows:

$$E = (K_e * n_N * 2\pi)/60$$

Method 2: If the back-EMF E' (unit: V/1000r/min) is marked on the nameplate, the calculation is as follows:

$$E=E'*n_N/1000$$

Method 3: If none of the two preceding parameters is marked on the nameplate, the calculation is as follows:

$$E=P/(\sqrt{3}*I)$$

In the preceding formulas, " n_N " indicates the rated rotation speed, "P" indicates the rated power, and "I" indicates the rated current.

6.2.2 Motor inertia identifying

Inertia identifying is applicable to the scenarios where large inertia exists and speed dynamic response follows up well in the vector control mode. Inertia identifying is required before inertia compensation enabling. During the identifying process, the VFD controls the automatic start and stop of the motor and prompts for autotuning completion. Set P03.44 (Motor 2 inertia identifying is specified by function code P35.44) for motor inertia identifying as follows:

Step 1 Set P00.01 to 0 to select the keypad.

- Step 2 Set P03.44 to 1 for enabling.
- Step 3 After the RUN key is pressed to give the VFD start command, the VFD starts inertia identifying and automatically controls the motor start and stop.

Functio n	Name	Default	Setting range	Description
P03.43	Motor 1 inertia identification torque	10.00/	0.0–100.0%	Due to friction force, it is required to set certain identification
P35.43	Motor 2 inertia identification torque	10.0%	torque)	torque for the inertia identification to be performed properly.
P03.44	Enabling motor 1 inertia identification		0.1	0: Disable
P35.44	Enabling motor 2 inertia identification	0	0–1	1: Enable

Note: If the motor is running at low speed for a long time, which indicates that P03.43 (Inertia identification torque) is set too low, perform manual stop, increase the value of P03.43, and execute inertia identification again.

6.3 Running command selection

Running commands are used to control the start, stop, forward running reverse running, and jogging of the VFD. The channels of running commands include keypad, terminal, and communication. Set P00.01 to select a channel of running commands.

Functio n	Name	Default	Setting range	Description
	Channel of			0: Keypad
P00.01	running	0	0–2	1: Terminal
	commands			2: Communication

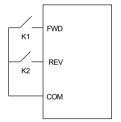
Keypad

When P00.01 is set to 0, you can control the VFD start or stop through the keypad key RUN or STOP/RST. After pressing the RUN key, the VFD starts running, and the RUN indicator turns on. In running state, if you press the STOP/RST key, the VFD stops running, and the RUN indicator turns off. For details about keypad operations, see chapter 5 Keypad operation guidelines.

Terminal

When P00.01 is set to 1, you can control the VFD start or stop through terminals. The setting procedure is as follows:

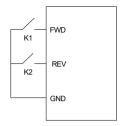
Step 1 Set P05.01–P05.08 and P05.11 to the required running commands. For example, if you need to set DI2 to reverse running, set P05.02 to 2.


Functio n	Name	Default	Settingrange	Description
		1		1: Run forward (FWD)
		4		2: Run reversely (REV)
	DI1-DI8	7		3: Three-wire running control (Din)
P05.01-	terminal	0		4: Jog forward
P05.08	function	0		5: Jog reversely
	selection	0		6: Coast to stop
		0		7: Reset faults
		0		^Note: DI5−DI8 are virtual
			0–95	terminals enabled by P05.16 and
				can only be modified through
				communication. For
	nction of			Modbus/Modbus TCP
P05.11		0		communication, the virtual
	HDI1			terminal address is 0x200A. For
				other communication protocols,
				see the PZD receiving function
				code options.

Step 2 Set P05.17 to select the terminal control mode.

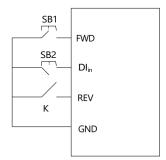
Functio n	Name	Default	Setting range	Description
P05.17	Terminal control mode	0	0–3	0: Two-wire control mode 1 1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2

Two-wire control mode 1: P05.17=0


The enabling is combined with the direction. This mode is widely used. The defined FWD/REV terminal command determines the motor rotation direction.

FWD	REV	Running command
OFF	OFF	Stop
ON	OFF	Forward running
OFF	ON	Reverse running
ON	ON	Hold

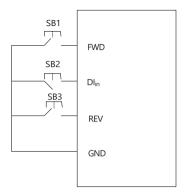
Two-wire control mode 2: P05.17=1


The enabling separated from the direction. In this mode, FWD is the enabling terminal. The direction depends on the defined REV state.

FWD	REV	Running command
OFF	OFF	Stop
ON	OFF	Forward running
OFF	ON	Stop
ON	ON	Reverse running

Three-wire control mode 1: P05.17=2

This mode defines Dl_{in} as the enabling terminal, and the running command is generated by FWD, while the direction is controlled by REV. During running, the Dl_{in} terminal needs to be closed, and when terminal FWD generates a rising edge signal, the VFD starts to run in the direction set by the state of terminal REV; the VFD needs to be stopped by disconnecting terminal Dl_{in}.


The direction control is as follows during running:

Dlin	REV	Previous direction	Present direction
0.1	055 011	FWD run	REV run
ON	OFF→ON	REV run	FWD run

Dlin	REV	Previous direction	Present direction
ON	ON OFF	REV run	FWD run
ON	ON→OFF	FWD run	REV run
ON OFF	ON		
ON→OFF	OFF	Decelerate to stop	

Three-wire control mode 2: P05.17=3

This mode defines Dl_{in} as the enabling terminal, and the running command is generated by FWD or REV, but the direction is controlled by both FWD and REV. During running, the Dl_{in} terminal needs to be closed, and terminal FWD or REV generates a rising edge signal to control the running and direction of the VFD; the VFD needs to be stopped by disconnecting terminal Dl_{in}.

The direction control is as follows during running:

Dlin	FWD	REV	Running direction
ON	OFF ON	ON	FWD run
ON	OFF→ON	OFF	FWD run
211	ON	055 011	REV run
ON	OFF	OFF→ON	REV run
ON→OFF	-	-	Decelerate to stop

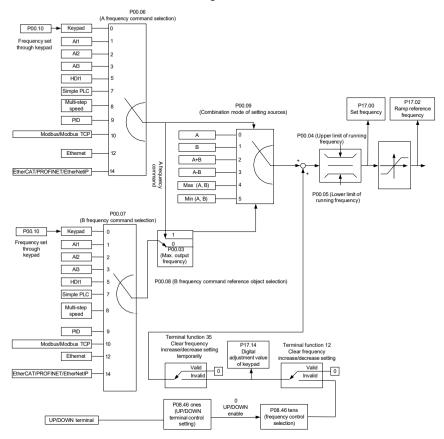
✓ **Note:** For two-wire controlled running mode, when the FWD/REV terminal is valid, if the VFD stops due to a stop command given by another source, the VFD does not run again after the stop command disappears even if the control terminal FWD/REV is still valid. To make the VFD run, you need to trigger FWD/REV again, for example, PLC single-cycle stop, fixed-length stop, and valid STOP/RST stop during terminal control. (See P07.04.)

Communication

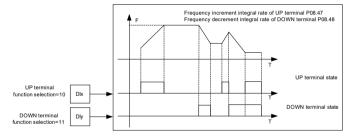
When P00.01 is set to 2, you can control the VFD start or stop by setting commands

through communication. For details, see chapter 7 Communication.

Functi o n	Name	Default	Setting range	Description
P00.02	Communication mode of running commands	0	0–6	0: Modbus/Modbus TCP 2: Ethernet 3: EtherCAT/PROFINET/EtherNet IP Others: Reserved


6.4 Frequency setting

The VFD supports multiple kinds of frequency reference modes, which can be categorized into two types; main reference channel and auxiliary reference channel.


There are two main reference channels, namely frequency reference channel A and frequency reference channel B. These two channels support simple arithmetical operation between each other, and they can be switched dynamically.

There is one auxiliary reference channel, namely the UP/DOWN terminal. By setting P08.46, you can enable the reference mode corresponding to the UP/DOWN terminal and its effect on the VFD frequency reference.

The actual VFD reference is comprised of the main reference channel and auxiliary reference channel. The schematic diagram is as follows:

When P05.01 or P05.02 is 10 or 11, DI1 or DI2 is the UP or DOWN terminal. When DI1 or DI2 is closed, the reference frequency will be fast increased or decreased. The increase or decrease rate is determined by P08.47 or P08.48. See the following figure.

6.4.1 Combination of frequency setting source

6.4.1.1 Combination mode of setting source

Set P00.09 to select the combination mode of setting source.

Function code	Name	Default	Setting range	Description
	Combination mode of setting source	0	0-5	0: A 1: B
P00.09				2: (A+B) 3: (A- B)
				4: Max(A, B) 5: Min(A, B)

6.4.1.2 Frequency channel switchover

You can set any of function codes P05.01–P05.08 or P05.11 to any of functions 13–15 to switch frequency channels. The setting procedure is as follows:

Step 1 Select any one of multifunction digital input terminals DI1–DI8, and HDI1 as an external input terminal.

Step 2 Set P05.01–P05.08 and P05.11 to any one of 13–15.

Function code	Name	Default	Setting range	Description
		1		
		4		13: Switch between A
		7		setting and B setting
	DI1-DI8 terminal	0		14: Switch between
P05.01-P05.08	function	0	0–95	combination setting and A
	selection	0	0-95	setting
		0		15: Switch between
		0		combination setting and
		0		B setting
P05.11	Function of HDI1	0		

The combinations are described in the following table:

Present referenc e channel	Multifunction digital input terminal function 13 (Switch from channel A to	Multifunction digital input terminal function 14 (Switch from combined setting to channel A)	Multifunction digital input terminal function 15 (Switch from combined setting to channel B)
Α	В	=	-
В	Α	-	-
A+B	-	Α	В
A-B	=	А	В
Max(A, B)	-	Α	В
Min(A, B)	-	Α	В

6.4.2 Frequency setting method

The VFD provides multiple frequency setting methods. You can set P00.06 and P00.07 to select the A and B frequency channel setting methods.

Functio n	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0		0: P00.10 1: Al1 2: Al2 3: Al3
P00.07	Setting channel of B frequency command	1	0–15	5: High-speed pulse HDI1 7: Simple PLC program 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved

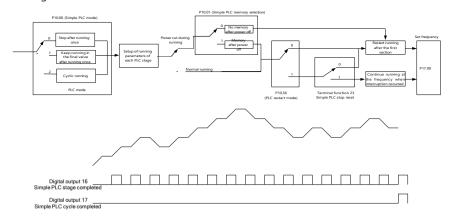
6.4.2.1 Setting frequency through keypad

When P00.06 or P00.07 (Setting channel of A or B frequency command) is set to 0 (keypad digital as the setting channel), and P00.10 specifies the original value of the digital setting based VFD frequency.

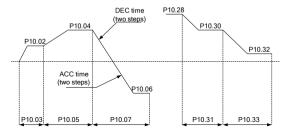
Functio n	Name	Default	Setting range	Description
P00.10	Setting frequency through keypad	50.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency. When the setting channel of A and B frequency commands is keypad, P00.10 specifies the original value of the digital setting based VFD frequency.

6.4.2.2 Setting frequency through analog

You can set P00.06 or P00.07 to 1, 2, or 3 (setting frequency through analog). For details, see section 6.9.2 Analog input and output terminal functions.


6.4.2.3 Setting frequency through high-speed pulse HDI

You can set P00.06 or P00.07 to 5 (setting frequency through high-speed pulse).


6.4.2.4 Setting frequency through simple PLC

You can set P00.06 or P00.07 to 7 (setting frequency through simple PLC).

Simple PLC is a multi-step speed generator, and the VFD can change the running frequency and direction automatically based on the running time to fulfill process requirements. The VFD can realize 16-step speed control, and provide four groups of acceleration/deceleration time for selection. After the set PLC completes one cycle (or one step), one ON signal can be output by the multifunction relay. See the following figure.

When simple PLC is selected for frequency giving, you need to set P10.02–P10.33 to determine the running frequency and running time of each step. The schematic diagram is as follows:

Note: The sign of multi-step speed determines the running direction of simple PLC, and a negative value means reverse running. ACC time indicates the time needed for the VFD to accelerate from 0Hz to the max. output frequency (P00.03). DEC time means the time needed if the VFD speeds down from the max. output frequency (P00.03) to 0Hz. Select corresponding acceleration/deceleration time, and then convert 16-bit binary number into hexadecimal number, finally, and then set corresponding function codes.

Functio n	Name	Default	Setting range	Description
P00.11	ACC time 1	Model		
F 00.11	ACC time i	depended		
P00.12	DEC time 1	Model		
P00.12	DEC time i	depended		
P08.00	ACC time 2	Model		The MED has form and a set
P08.00	ACC time 2	depended		The VFD has four groups of
P08.01	DEC time 2	Model	0.0.3600.0-	ACC/DEC time, which can be selected by multifunction digital
P08.01		depended		
P08.02	1661: 3	Model	0.0–3600.0s	input terminal function 21 or 22 (specified by P05). The factory
P08.02	ACC time 3	depended		default ACC/DEC time of the VFD is the first group.
P08.03	DEC time a 3	Model		
P08.03	DEC time 3	depended		is the first group.
D00.04	ACC 1:222 A	Model		
P08.04	ACC time 4	depended		
D00 0F	DEC time 4	Model		
P08.05		depended		
	ACC/DEC time			Select corresponding
P10.34	of steps 0–7 of	0x0000	0x0000-0xFFFF	acceleration/deceleration time,
	simple PLC			and then convert 16-bit binary

Functio n	Name	Default	Setting range	Description
P10.35	ACC/DEC time of steps 8–15 of simple PLC			number into hexadecimal number, finally, and then set corresponding function codes. For details, see the following
	0.5			table.

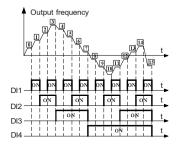
The description is as follows:

Functio n	Bir	nary	Step	ACC/DEC time 1	ACC/DEC time 2	ACC/DEC time 3	ACC/DEC time 4
	Bit1	Bit0	0	00	01	10	11
	Bit3	Bit2	1	00	01	10	11
	Bit5	Bit4	2	00	01	10	11
D10 24	Bit7	Bit6	3	00	01	10	11
P10.34	Bit9	Bit8	4	00	01	10	11
	Bit11	Bit10	5	00	01	10	11
	Bit13	Bit12	6	00	01	10	11
	Bit15	Bit14	7	00	01	10	11
	Bit1	Bit0	8	00	01	10	11
	Bit3	Bit2	9	00	01	10	11
	Bit5	Bit4	10	00	01	10	11
D10.25	Bit7	Bit6	11	00	01	10	11
P10.35	Bit9	Bit8	12	00	01	10	11
	Bit11	Bit10	13	00	01	10	11
	Bit13	Bit12	14	00	01	10	11
	Bit15	Bit14	15	00	01	10	11

6.4.2.5 Setting frequency through multi-step speed

commands

through multi-step speed


commands). It is applicable to scenarios where the VFD running frequency does not need to be adjusted continuously and only a number of frequency values are needed.

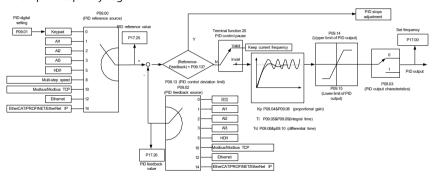
The VFD supports the setting of 16-step speed, which are set by combined codes of multi-step terminals 1–4 set by DI terminals, corresponding to function code P05.01–P05.11) and correspond to multi-step speed 0 to multi-step speed 15.

When terminal 1, terminal 2, terminal 3, and terminal 4 are OFF, the frequency input mode is set by P00.06 or P00.07. When terminal 1, terminal 2, terminal 3, and terminal 4 are not all OFF, the frequency set by multi-step speed will prevail, and the priority of

multi-step setting is higher than that of the keypad, analog, high-speed pulse, PID, and communication settings.

Note: The sign of multi-step speed determines the running direction of simple PLC, and a negative value means reverse running. For details, see section 6.4.2.4 Setting frequency through simple PLC.

Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 4	OFF							
Step	0	1	2	3	4	5	6	7
Terminal 1	OFF	ON	OFF	ON	OFF	ON	OFF	ON
Terminal 2	OFF	OFF	ON	ON	OFF	OFF	ON	ON
Terminal 3	OFF	OFF	OFF	OFF	ON	ON	ON	ON
Terminal 4	ON							
Step	8	9	10	11	12	13	14	15


Functio n	Name	Default	Setting range	Description
P05.01– P05.08	DI1–DI8 terminal function selection	1 4 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0–95	16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Pause multi-step speed running
P05.11	Function of HDI1	0		

Functio n	Name	Default	Setting range	Description
P10.02-	Multi-step speeds 0–15	0.0%	Frequency: -300.0%–300.0%	The setting 100.0% corresponds to the max. output frequency (P00.03).
P10.32	and running time	0.0s (min)	Time: 0.0– 6553.5s(min)	The time unit is specified by P10.37.

6.4.2.6 Setting frequency through PID control

You can set P00.06 or P00.07 to 9 (setting frequency through PID control).

PID control, a common mode for process control, is mainly used to adjust the VFD output frequency or output voltage, thus forming a negative feedback system to keep the controlled variables above the target. It is applicable to flow control, pressure control, temperature control, and so on. The following is the basic schematic block diagram for output frequency regulation.

Functio n	Name	Default	Setting range	Description
P09.00	PID reference source selection	0	0–15	When P00.06 or P00.07 (Setting channel of A or B frequency command) is 9 or P04.13 (Voltage setting channel) is 9, the VFD is process PID controlled. The function code determines the target given channel during the PID process. 0: Setting through P09.01 1: Al1 2: Al2

Functio n	Name	Default	Setting range	Description
n				3: AI3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved The set target of process PID is a relative value, for which 100% equals 100% of the feedback
				signal of the controlled system. The system always performs calculation by using a relative value (0–100.0%). The function code is mandatory
P09.01	ID digital setting	0.0%	-100.0%—100.0%	when P09.00=0. The base value of P09.01 is the feedback of the system.
P09.02	PID feedback source selection	0	0–15	0: Setting through P09.01 1: Al1 2: Al2 3: Al3 5: High-speed pulse HDI1 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved Note: The reference channel and feedback channel cannot be duplicated. Otherwise, effective PID control cannot be achieved.

Functio n	Name	Default	Setting range	Description
P09.03	PID output characteristics selection	0	0–1	0: PID output is positive. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will decrease to balance the PID. Example: PID control on strain during unwinding. 1: PID output is negative. When the feedback signal is greater than the PID reference value, the output frequency of the VFD will increase to balance the PID. Example: PID control on tension during unwinding
P09.04	Low frequency proportional gain (Kp)	1.00	0.00-100.00	Low-frequency switching point: 5.00Hz, high-frequency switching point: 10.00Hz (P09.04 corresponds to high-frequency parameter), and the middle is the linear interpolation between these two points.
P09.05	Low frequency integral time (Ti)	0.90s	0.00-10.00s	-
P09.06	Low frequency differential time (Td)	0.00s	0.00-10.00s	-
P09.07	Low frequency point for PID parameter switching	5.00Hz	0.00Hz-P09.11	-
P09.08	High frequency proportional gain (Kp)	1.80	0.00-100.00	-
P09.09	High frequency integral time (Ti)	0.90s	0.00-10.00s	-
P09.10	High frequency differential time	0.00s	0.00-10.00s	-

Functio n	Name	Default	Settingrange	Description
	(Td)			
P09.11	High frequency point for PID parameter switching	10.00Hz	P09.07-P00.03	-
P09.12	ng period (T)	0.001s	0.000-1.000s	Used to indicate the sampling cycle of feedback. The regulator calculates in each sampling cycle. A longer sampling cycle indicates slower response.
P09.13	PID control deviation limit	0.0%	0.0–100.0%	Used to adjust the accuracy and stability of the PID system. The output value of the PID system is relative to the max. deviation of the closed loop reference. As shown in the following figure, the PID regulator stops regulating in the range of deviation limit. Posterior deviation limit. Posterior deviation limit. Posterior deviation limit.
P09.14	PID output upper limit	100.0%	P09.15-100.0% (Relative to max. frequency)	Used to set the upper limit of PID regulator output values.
P09.15	PID output lower limit	0.0%	-100.0%–P09.14 (Relative to the max. frequency)	Used to set the lower limit of PID regulator output values.
P09.16	Feedback offline detection value	0.0%	0.0–100.0%	When the feedback value is smaller than or equal to the
P09.17	Feedback offline detection time	1.0s	0.0–3600.0s	feedback offline detection value, and the duration exceeds the

Functio n	Name	Default	Settingrange	Description
				value specified by P09.17, the VFD reports "PID feedback offline fault", and the keypad displays "E22". Output frequency f
P09.18	PID control selection	0x0001	0x0000-0x1111	the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens place: 0: Same as the main reference direction 1: Contrary to the main reference direction Hundreds place: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands place: 0: A+B frequency. ACC/DEC of main reference A frequency source pre-charging is invalid. 1: A+B frequency, acceleration/ deceleration of main reference A frequency source pre-charging is valid, acceleration/deceleration is determined by P08.04 (acceleration time 4).
P09.19	ACC/DEC time of PID command	0.0s	0.0-1000.0s	-

Functio n	Name	Default	Setting range	Description
P09.20	PID output filter time	0.000s	0.000-10.000s	-
P17.00	Set frequency	0.00Hz	0.00Hz-P00.03	-
P17.25	PID reference value	0.0%	-100.0–100.0%	-
P17.26	PID feedback value	0.0%	-100.0–100.0%	-

Introduction to the working principles and control methods for PID control Proportional regulation (Kp)

Proportional control can respond to feedback changes rapidly, however, it cannot eliminate the static difference by itself. A larger proportional gain indicates a faster regulating speed, but a too large gain will result in oscillation. To solve this problem, set the integral time to a large value and the differential time to 0 to run the system, and then change the reference to observe the difference (that is, static difference) between the feedback signal and reference. If the static difference occurs in the direction of reference change (such as reference increase, where the feedback is always less than the reference after system stabilizes), continue increasing the proportional gain; otherwise, decrease the proportional gain. Repeat this process until the static difference becomes small.

Functio n	Name	Description
P09.04, P09.08	roportional gain (Kp)	The function is applied to the proportional gain P of PID input. P determines the strength of the whole PID regulator. The larger the value of P, the stronger the adjustment intensity. The value 100 indicates that when the difference between the PID feedback value and given value is 100%, the range within which the PID regulator can regulate the output frequency command is the max. frequency (ignoring integral function and differential function).

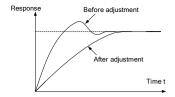
Integral time (Ti)

The integral adjuster can be used to eliminate static difference. Too large regulation may lead to system oscillation. The integral time parameter is generally regulated gradually from large to small until the stabilized system speed fulfills the requirement.

Functio n	Name	Description
		Used to determine the speed of the integral adjustment on the
		deviation of PID feedback and reference from the PID regulator.
P09.05,	gral time (Ti)	When the deviation between PID feedback and reference is 100%,
P09.09		the integral regulator works continuously during the time to
		achieve the max. output frequency (P00.03) or the max. voltage
		(P04.17). Shorter integral time indicates stronger adjustment.

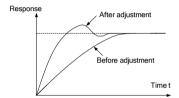
Differential time (Td)

Differential control is used to control the feedback signal variation based on the change trend. Exercise caution before using the differential regulator since it may enlarge the system interferences, especially those with high change frequency.

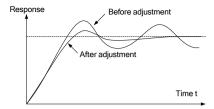

Functio n	Name	Description
		Used to determine the strength of the change ratio adjustment on
		the deviation of PID feedback and reference from the PID
P09.06,	Differential	regulator. If the feedback changes 100% during the time, the
P09.10	time (Td)	adjustment of the differential regulator is the max. output
		frequency (P00.03) or the max. voltage (P04.17). Longer differential
		time indicates stronger adjustment.

■ How to fine-tune PID

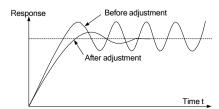
After setting the parameters controlled by PID, you can adjust these parameters by the following means.


Control overshoot

When overshoot occurred, shorten the derivative time (Td) and prolong integral time (Ti).


Stabilize the feedback value as fast as possible

When overshoot occurred, shorten integral time (Ti) and prolong derivative time (Td) to stabilize control as fast as possible.


Control long-term oscillation

If the cycle of periodic oscillation is longer than the set value of integral time (Ti), it indicates the integral action is too strong, prolong the integral time (Ti) to control oscillation

Control short-term oscillation

If the oscillation cycle is as short almost the same as the set value of differential time (Td), it indicates the differential action is too strong. Shorten the differential time (Td) to control oscillation. When the differential time (Td) is set to 0.00 (namely no differential control), and there is no way to control oscillation, decrease the proportional gain.

6.4.2.7 Frequency set through communication

You can set P00.06 or P00.07 to 10, 12, or 14 (Setting frequency through communication). For details, see chapter 7 Communication.

6.4.3 Frequency fine-tuning

The VFD supports frequency fine-tuning based on the set frequency. In some special scenarios, the set frequency can be set to 0, and the frequency fine-tuning function can

be used for frequency setting during the whole process.

Step 1 Select any one of multifunction digital input terminals DI1–DI8, and HDI1 as an external input terminal.

Step 2 Set P05.01–P05.08 and P05.11 to 10 or 11.

Functio n	Name	Default	Setting range	Description
	DI1–DI8 terminal	1	- - - - 0–95	10: Increase frequency setting (UP) 11: Decrease frequency setting
		4		
		7		
P05.01-		0		
P05.08	function	0		
	selection	0		
		0		(DOWN)
		0		
DOE 11	Franctice of UDI1	0		
P05.11	Function of HDI1	0		Ones place: Frequency setting
		0x000	0x000-0x221	selection
				0: The setting made through
				UP/DOWN is valid.
	UP/DOWN terminal control setting			1: The setting made through
				UP/DOWN is invalid.
				Tens place: Frequency control selection
				0: Valid only when P00.06=0 or
				P00.07=0
P08.46				1: Valid for all frequency setting
F00.40				methods
				2: Invalid for multi-step speed
				running when multi-step speed
				running has the priority
				Hundreds place: Action selection
				for stop
				0: Setting is valid.
				1: Valid during running, cleared
				after stop
				2: Valid during running, cleared
				after a stop command is received

Functio n	Name	Default	Setting range	Description
	Frequency			
P08.47	integral rate of	0.50Hz/s	0.01-50.00	-
	the UP terminal			
	Frequency			
DO0 40	integral rate of	0.5011-7-	0.01 50.00	
P08.48	the DOWN	0.50Hz/s	0.01–50.00	-
	terminal			

6.5 Speed control mode selection

The VFD supports three speed control modes. You can set P00.00 to select a speed control mode based on actual conditions. Before using a vector control mode (0 or 1), set the motor nameplate parameters and perform motor parameter autotuning first. For details, see sections 6.1.2 Rated motor parameter setting and 6.2.1 Motor parameter autotuning.

Functio n	Name	Default	Setting range	Description
P00.00	ed control mode	2	0–2	0: SVC mode 0 1: SVC mode 1 2: Space voltage vector control mode

SVC mode 0: P00.00=0

In this case, there is no need to install encoders. It is applicable to scenarios with requirements for low frequency, great torque, and high speed control accuracy. It implements precise control of speed and torque. Compared to the SVC mode 1, this mode is more suitable for medium and small power applications. For details, see Group P03—Vector control of motor 1 and Group P35—Vector control of motor 2.

✓ Note: The SM in this mode is applicable to large-power low frequency running rather than ultra-high speed running.

SVC mode 1: P00.00=1

In this case, there is no need to install encoders. It is applicable to scenarios that require high speed control accuracy. It can be used across all power ranges, enabling precise control of speed and torque. For details, see Group P03—Vector control of motor 1 and Group P35—Vector control of motor 2.

Space voltage vector control mode: P00.00=2

In this case, there is no need to install encoders. It can improve the control accuracy with the advantages of stable operation, valid low-frequency torque boost and current vibration suppression and the functions of slip compensation and voltage adjustment. For details, see Group P04—V/F control of motor 1 and Group P36—V/F control of motor 2.

6.6 Torque setting method selection

The VFD supports torque control and speed control. Speed control aims to stabilize the speed to keep the set speed consistent with the actual running speed, meanwhile, the max. load-carrying capacity is restricted by the torque limit. Torque control aims to stabilize the torque to keep the set torque consistent with the actual output torque, meanwhile, the output frequency is restricted by the upper and lower limits. The following uses torque mode setting for motor 1 as an example. For details, see Group P03—Vector control of motor 1. The torque mode setting for motor 2 is similar to that for motor 1. For details, see Group P35—Vector control of motor 2.

6.6.1 Torque setting method selection

You can set P03.11 to select a torque setting method. The torque setting adopts a relative value, 100% corresponds to the motor rated current, and the setting range is -300.0%–300.0%. After giving the start command to the VFD, the VFD runs in the forward direction when the torque reference value is positive and in the reverse direction when the torque reference value is negative.

Functio n	Name	Default	Setting range	Description
P03.11	Torque setting method selection of motor 1	0	0–15	0: P03.12 1: Al1 2: Al2 3: Al3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved

Functio n	Name	Default	Setting range	Description
P03.12	Torque set through keypad of motor 1	20.0%	-300.0%–300.0%	Torque setting is a relative value. Note: 100% corresponds to the motor rated current.
P03.13	Torque reference filter time of motor 1	0.010s	0.000-10.000s	-

6.6.2 Method for switching between speed control and torque control

There are three switching methods for speed control and torque control.

Method 1 Enable control switching

Set P03.32 to 0 for speed control or 1 for torque control.

Method 2 Switch signal through multifunction digital input terminal selection

The multifunction digital input terminal signal switching procedure is as follows:

Step 1 Select any one of multifunction digital input terminals DI1–DI8, and HDI1 as an external input terminal.

Step 2 Set P05.01-P05.08 and P05.11 to 29.

When function 29 is valid, set P03.32 to 0 for torque control or 1 for speed control.

Method 3 Switch through communication

Bit 2 of the VFD special control command word (address 2009H) is written to 1 through the RS485 master station to enable the switching between torque and speed control.

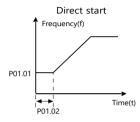
When the communication based switching is effective, if P03.32 is set to 0, torque control is selected, and if P03.32 is set to 1, speed control is selected.

Note: When the terminal for switching speed control and torque control is valid, the control enabling selection is the opposite of that selected in P03.32.

Functio n	Name	Default	Setting range	Description
P03.32	Enabling torque control of motor 1	0	0–1	0: Disable 1: Enable

Functio n	Name	Default	Setting range	Description
		1		
		4		
		7		29: Switch between speed control and torque control
P05.01-		0		
P05.01-		0	0–95	
PU3.06		0	-	
		0		
		0		
		0		
P05.11	Function of HDI1	0		

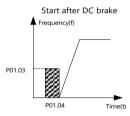
6.7 Start/stop settings


6.7.1 Start settings

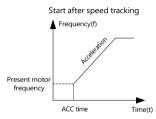
For a specific motor type and application scenario, you can select a start mode by setting P01.00

Functio n	Name	Default	Setting range	Description
P01.00	nning mode of start	0		Direct start Start after DC braking Start after speed tracking (software) Others: Reserved

Direct start: P01.00=0


If the braking time before start is 0, the VFD runs at the starting frequency of direct start P01.01. This is often applicable to start from a still state. See the following figure.

Start after DC braking: P01.00=1


If the DC braking time is not 0, enable the motor to keep at a position by means of DC

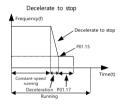
braking, and then perform ACC start. This is applicable to the scenarios with the motor in slight rotation before start. See the following figure.

Start after speed tracking: P01.00=4

The VFD searches for the current running frequency and direction of the motor and then controls the motor to run from the current frequency to the set frequency, implementing smooth running without impact. This is applicable to the scenarios with the motor in high-speed rotation or with transient grid voltage drop. See the following figure.

Functio n	Name	Default	Setting range	Description
P01.01	Starting frequency of direct start	0.50Hz	0.00Hz-P00.03	The function code indicates the initial frequency during VFD start. See P01.02 (Starting frequency hold time) for detailed information.
P01.02	Starting frequency hold time	0.0s	0.0–50.0s	Setting a proper starting frequency can increase the torque during VFD start. During the hold time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD runs from the starting frequency to the set frequency. If the set frequency is lower than the starting

Functio n	Name	Default	Setting range	Description
				frequency, the VFD stops running and keeps in the standby state. The starting frequency is not limited in the lower limit frequency. Output frequency f Time t Tim
P01.03	Braking current before start	0.0%	0.0–100.0%	The VFD performs DC braking with the braking current before start and it speeds up after the DC
P01.04	Braking time before start	0.00s	0.00–50.00s	braking time. If the set DC braking time is 0, DC braking is invalid. Stronger braking current indicates larger braking power. The DC braking current before start is a percentage of the VFD rated output current.
P01.23	art delay time	0.0s	0.0-600.0s	After a VFD running command is given, the VFD is in standby state and restarts with the 起动 delay to implement brake release.


6.7.2 Stop settings

You can select a stop mode by setting P01.08.

Functio n	Name	Default	Setting range	Description
P01.08	Stop mode	0	10–1	0: Decelerate to stop 1: Coast to stop

Decelerate to stop: P01.08=0

After a stop command takes effect, the VFD lowers output frequency based on the DEC mode and the defined DEC time; after the frequency drops to the stop speed (P01.15), the VFD stops.

Coast to stop: P01.08=1

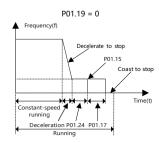
After a stop command takes effect, the VFD stops output immediately. And the load coasts to stop according to mechanical inertia.

Note: If the set frequency is changed from higher than the frequency lower limit to lower than the frequency lower limit, the VFD takes the action specified by P01.19.

Functio n	Name	Default	Setting range	Description
P01.19	Action selected when running frequency less than frequency lower limit	0x00	0x00-0x12	Ones place: Action selection 0: Run at the frequency lower limit 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop

If you need to achieve a fast and stable stop of the motor, the motor can be stopped by DC braking after reaching the low speed frequency specified by P01.09.

Function code	Name	Default	Setting range	Description
P01.09	Starting frequency of braking for stop	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency. During the deceleration to stop, the VFD starts DC braking for stop when the running frequency reaches the frequency specified by P01.09.


P01.09 = Non-zero value

During decelerating to stop, if the running frequency of VFD is lower than the starting frequency of brake for stop (P01.09), the VFD waits for the demagnetization time P01.10 and checks the value of P01.12. If the value is a non-zero value, the VFD performs DC braking with the time specified by P01.12. When the DC braking time is reached, the VFD coasts to stop. If the value of P01.12 is zero, short-circuit braking for stop is invalid.

P01.09 = 7ero

The VFD decelerates to stop according to the normal process. When the ramp frequency is less than P01.15, the VFD performs stop determination with a delay specified by P01.24 according to the mode specified by P01.16. If P01.16=0, the VFD coasts to stop. If P01.16=1, the VFD needs to check whether the motor output frequency is less than P01.15. If yes, the VFD coasts to stop. If no, the VFD coasts to stop with a delay specified by P01.17.

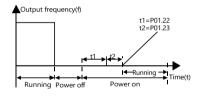
The methods for fast decelerating to stop are as follows:

Method 1 Increase the VFD power to improve the VFD max. braking capability.

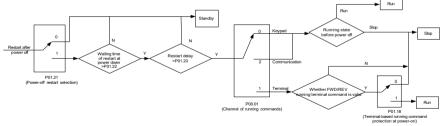
Method 2 Decelerate to the lower speed specified by P01.09 to enable DC braking.

Method 3 Set P08.52 to enable magnetic flux braking to accelerate the motor's deceleration tracking process.

Method 4 Add braking resistors.


Method 5 Set the S-curve deceleration method.

Functio n	Name	Default	Setting range	Description
				The VFD blocks the output before starting DC braking for stop. The
P01.10	gnetization time	0.00s	0.00-30.00s	VFD starts DC braking after this
				time so as to prevent overcurrent caused by DC braking at high speed.
P01.11	DC braking current for stop	0.0%	0.0-100.0%	Percentage of the VFD rated output current. Stronger current indicates greater DC braking effect.
P01.12	braking time for stop	0.00s	0.0–50.0s	DC braking duration. If the time is 0, DC braking is invalid, and the VFD decelerates to stop within the specified time.
P01.15	Stop speed	0.50Hz	0.00Hz-P00.03	-
P01.16	Stop speed detection mode	0	0–1	O: Detect by the set speed (unique in space voltage vector control mode) 1: Detect according to speed feedback
P01.17	Stop speed detection time	0.50s	0.00-100.00s	-
P01.24	Stop speed delay	0.0s	0.0-600.0s	-


6.7.3 Power-off restart

For all command running channels, if P01.21=1, the VFD memorizes the running status at power off. If the VFD is running before power-off, the VFD automatically runs with a wait time specified by P01.22 at the next power-on when start conditions are met.

When terminals are uses as the command running channel, you need to set P01.18 to 1. The following figure shows the wait time for restart after power-off.

The following figure shows the logic diagram for restart after power-off.

Functio n	Name	Default	Setting range	Description
P01.21	Power-off restart selection	0	0–1	0: Disable 1: Enable
P01.22	Wait time for power-on restart	1.0s	0.0-3600.0s	It is valid when P01.21=1. The function code indicates the wait time before the automatic running of the VFD that is re-powered on.
P01.23	art delay time	0.0s	0.0-600.0s	After a VFD running command is given, the VFD restarts running output with the delay defined by P01.23 from the standby state, to implement brake release.
P01.18	Terminal-bas ed running command protection at power-on	0	0–1	0: Invalid at power-on 1: Valid at power-on *Note: Exercise caution before using this function. Otherwise, serious consequences may result.

Terminal-based running command is invalid at power-on: P01.18 = 0

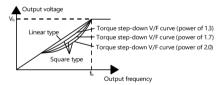
Though the command running terminal is considered as valid during power-on, the VFD does not run and it keeps the protection state until the terminal is disabled and then enabled.

Terminal-based running command is valid at power-on: P01.18=1

If the command running terminal is considered as valid during power-on, the VFD is started automatically after the initialization.

6.8 Control performance regulation

6.8.1 Space vector control performance optimization

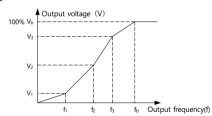

The following uses space vector control performance optimization for motor 1 as an example. For details about related function codes, see Group P04—V/F control of motor 1. For the commissioning of space vector control performance optimization for motor 2, refer to that is for motor 1. For details about related function codes, see Group P36—V/F control of motor 2.

6.8.1.1 V/F curve setting

The VFD provides multiple V/F curve modes to meet different requirements. You can select V/F curves or set V/F curves as required.

For the load featuring constant torque, such as conveyor belt which runs in straight line, as the whole running process requires constant torque, it is recommended to adopt the straight line V/F curve.

For the load featuring decreasing torque, such as fan and water pumps, as there is a power (square or cube) relationship between its actual torque and speed, it is recommended to adopt the V/F curve corresponding to the power of 1.3, 1.7 or 2.0.



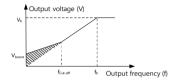
Note: In the figure, V_b indicates the motor rated voltage and f_b indicates the motor rated frequency.

Functio n	Name	Default	Setting range	Description
P04.00	V/F curve setting of motor 1	0	0–5	0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 1.7) 4: Torque-down V/F curve (power of 2.0) 5: Customized V/F (V/F

Functio n	Name	Default	Setting range	Description
				separation); in this mode, V can be
				separated from F and F can be
				adjusted through the frequency
				setting channel set by P00.06 or
				the voltage setting channel set by
				P04.13 to change the
				characteristics of the curve.

The VFD also provides multi-point V/F curves. You can change the VFD output V/F curves by setting the voltage and frequency of the three points in the middle. The complete curve consists of five points starting from (0Hz, 0V) and ending at (motor fundamental frequency, motor rated voltage). During setting, follow the rule: $0 \le f1 \le f2 \le f3 \le$ Motor fundamental frequency, and $0 \le V1 \le V2 \le V3 \le$ Motor rated voltage Too high voltage for low frequency will cause motor overheat or damage and cause VFD overcurrent stall or overcurrent protection. When P04.00 is set to 1 (multi-dot V/F curve), you can set the V/F curve through P04.03–P04.08.

Functio n	Name	Default	Setting range	Description
P04.03	V/F frequency point 1 of motor 1	0.00Hz	0.00Hz-P04.05	-
P04.04	V/F voltage point 1 of motor 1	0.0%	0.0%-110.0%	100% corresponds to the motor 1 rated voltage.
P04.05	V/F frequency point 2 of motor 1	0.00Hz	P04.03-P04.07	-
P04.06	V/F voltage point 2 of motor 1	0.0%	0.0%-110.0%	100% corresponds to the motor 1 rated voltage.


Functio n	Name	Default	Setting range	Description
P04.07	V/F frequency point 3 of motor 1	0.00Hz	P04.05–P02.02 (Hz, P02.00=0 Rated frequency of AM 1) or P04.05–P02.16 (Hz, P02.00=1 Rated frequency of SM 1)	-
P04.08	V/F voltage point 3 of motor 1	0.0%	0.0%-110.0%	100% corresponds to the motor 1 rated voltage.

6.8.1.2 Torque boost

Boost compensation to output voltage can effectively improve the low-speed torque performance in the V/F control. The cut-off frequency of manual torque boost is a percentage of the rated motor frequency f_b . Torque boost can improve the low-frequency torque characteristics in the V/F control.

You need to select torque boost based on the load. The load is proportional to the boost, but the boost cannot be too large. If the torque boost is too large, the motor will run at over-excitation, which may cause increased output current and motor overheating, thus decreasing the efficiency. The default torque boost is 0.0%, which indicates automatic torque boost so that the VFD can regulate the torque boost based on the actual load.

Set P04.01 to determine the torque boost of motor 1. Set P04.02 to determine the torque boost cut-off frequency of motor 1. Below this frequency threshold, torque boost is valid; exceeding this threshold will invalidate torque boost. See the following figure.

Functio n	Name	Default	Setting range	Description
P04.01	Torque boost of motor 1	0.0%	0.0%-10.0%	0.0% (automatic torque boost); 0.1%–10.0% (manual torque

Functio n	Name	Default	Setting range	Description
				boost) ^Note: V _b indicates the max. output voltage.
P04.02	Torque boost cut-off of motor 1	20.0%	0.0%-50.0%	The cut-off frequency of manual torque boost is a percentage of the rated motor frequency fb. Torque boost can improve the low-frequency torque characteristics in the V/F control.

6.8.1.3 V/F slip compensation gain

The V/F control is an open-loop mode, while a sudden motor load change will cause motor rotation speed fluctuation. In cases where strict speed requirements must be met, you can set the slip compensation gain through P04.09 to change the VFD internal output adjustment method and therefore compensate for the speed change caused by load fluctuation, improving the motor mechanical rigidity.

The formula used to calculate the motor rated slip frequency is as follows: $\triangle f = f_b - n^*p/60$

Of which, f_b indicates the rated frequency of motor 1, corresponding to function code P02.02; n indicates the rated rotation speed of motor 1, corresponding to function code P02.03; p indicates the number of motor pole pairs. 100.0% corresponds to the rated slip frequency $\triangle f$ of motor 1.

Functio n	Name	Default	Setting range	Description
	V/F slip			For P04.09, 100.0% corresponds
P04.09	compensation	100.0%	0.0–200.0%	to the rated slip frequency $ riangle$ f of
	gain of motor 1			motor 1.

6.8.1.4 Oscillation control

In large-power driving scenarios, using the space voltage vector control mode will cause motor oscillation, which can be eliminated by setting P04.10 and P04.11, while the oscillation control threshold of motor 1 is specified by P04.12.

Functio n	Name	Default	Settingrange	Description
P04.10	Low-frequency oscillation control factor of motor 1	10	0–100	
P04.11	High-frequenc y oscillation control factor of motor 1	10	0–100	Setting a greater value indicates better control effect. However, if the value is too large, the VFD output current may be too
P04.12	Oscillation control threshold of motor 1	30.00Hz	0.00Hz-P00.03	large.

6.8.1.5 V/F flux weakening performance optimization

When the AM needs to run with flux weakened, set P04.19 in the V/F control mode to increase the output voltage and maximize the bus voltage utilization, improving the motor acceleration performance.

Functio n	Name	Default	Setting range	Description
	V/F constant power zone			
P04.19	weakening coefficient of motor 1	1.00	1.00-1.30	-

6.8.1.6 AM IF control

Generally, the IF control mode is valid for AMs. It can be used for SMs only when the frequency is extremely low. IF control is implemented by performing closed-loop control on the total output current of the VFD. The output voltage adapts to the current reference, and open-loop control is separately performed over the frequency of the voltage and current. Take AM 1 for example. Set P04.26 to 1 to enable the IF mode for AM 1. You can set related parameters when the IF mode is enabled.

Functio n	Name	Default	Settingrange	Description
P04.26	Enabling IF mode for AM 1	0	0–1	0: Invalid 1: Enable

Functio n	Name	Default	Settingrange	Description
P04.27	Current setting in IF mode for AM 1	120.0%	0.0–200.0	When IF control is adopted for AM 1, the function code is used to set the output current. The value is a percentage of the motor rated current.
P04.28	Proportional coefficient in IF mode for AM	350	0–5000	When IF control is adopted for AM 1, the function code is used to set the proportional coefficient of the output current closed-loop control.
P04.29	Integral coefficient in IF mode for AM 1	150	0–5000	When IF control is adopted for AM 1, the function code is used to set the integral coefficient of the output current closed-loop control.
P04.30	Frequency threshold for switching off IF mode for motor 1	10.00Hz	0.00Hz-P04.31	-
P04.31	End frequency point for switching off IF mode for motor 1	25.00Hz	P04.30-P00.03	-

6.8.1.7 Energy-saving run for AM V/F

During AM actual running, the VFD can search for the max. efficiency point so as for the AM to keep running in the most efficient state to save energy. This function is generally used in light load or no-load cases. Set P04.32 to specify whether to act in energy-saving run.

Functio n	Name	Default	Settingrange	Description
P04.32	V/F control energy-saving	0		0: Disable (Energy saving is invalid)
1 04.32	mode selection for		0 3	1: Max. efficiency
	AM 1			2: Optimal power factor

Functio n	Name	Default	Settingrange	Description
				3: Max. ratio of torque to current In light-load state, the motor can adjust the output voltage automatically to achieve energy saving. This function is no applicable to the cases where sudden load changes often occur.
P04.33	V/F control energy-saving optimization coefficient for AM 1	100.0%	25.0-400.0%	-

6.8.1.8 Reactive current regulation in SM V/F control

When the SM V/F control mode is enabled, you can set P04.22 to specify the frequency threshold for the switching between pull-in current 1 and pull-in current 2. When the output frequency is less than P04.22, the motor reactive current is specified by P04.20; when the output frequency is greater than P04.22, the motor reactive current is specified by P04.21.

Functio n	Name	Default	Setting range	Description
P04.20	Pull-in current 1 in V/F control of SM 1	30.0%	-100.0%—100.0%	100% corresponds to the motor rated current.
P04.21	Pull-in current 2 in V/F control of SM 1	10.0%	-100.0%—100.0%	100% corresponds to the motor rated current.
P04.22	V/F control pull-in current frequency switching point for SM 1	20.0%	0.0%–200.0%	100% corresponds to the motor rated frequency.
P04.23	V/F control reactive current closed-loop proportional coefficient for SM 1	50	0–500	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control.

Functio n	Name	Default	Setting range	Description
P04.24	V/F control reactive current closed-loop integral time for SM 1	30	0–300	When the SM VF control mode is enabled, the function code is used to set the integral time of reactive current closed-loop control.
P04.25	V/F control reactive closed-loop output limit for SM 1	8000	0–16000	-

6.8.2 Vector control performance optimization

The following uses vector control performance optimization for motor 1 as an example. For details about related function codes, see Group P03—Vector control of motor 1. The space vector control performance optimization for motor 2 is similar to that is for motor 1. For details about related function codes, see Group P35—Vector control of motor 2.

6.8.2.1 Torque upper limit

Speed control and torque control in the vector control mode are restricted by torque upper limits. When you set P03.18 (Setting source of electromotive torque upper limit) to keypad, the torque upper limit is specified by P03.20. When you set P03.19 (Setting source of braking torque upper limit) to keypad, the torque upper limit is specified by P03.21.

Functio n	Name	Default	Setting range	Description
P03.18	Setting source of electromotive torque upper limit for motor 1	0	0–15	0: Set by P03.20 (selected by P03.18) 0: Set by P03.21 (selected by P03.19)
P03.19	Setting source of braking torque upper limit for motor 1	0	0–15	1: Al1 2: Al2 3: Al3 5: High-speed pulse HDI1 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication Others: Reserved

Functio n	Name	Default	Setting range	Description
				∠Note: 100% corresponds to the motor rated current.
P03.20	Electromotive torque upper limit set through keypad for motor 1	180.0%	0.0-300.0%	Used to set relative values of torque limits.
P03.21	Braking torque upper limit set through keypad for motor 1	180.0%	0.0–300.0%	The value is relative to the motor rated current.

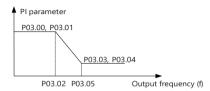
6.8.2.2 Frequency upper limit settings in torque control

In torque control, the VFD outputs torque according to the set torque command. When the set torque is greater than the load torque, the VFD output frequency increases to the frequency upper limit; when the set torque is less than the load torque, the VFD output frequency decreases to the frequency lower limit; when the VFD output frequency is restricted, the output torque will no longer be the same as the set torque. When you set P03.14 to set the setting source of forward rotation upper-limit frequency in torque control, the torque limit is specified by P03.16. When you set P03.15 to set the setting source of reverse rotation upper-limit frequency in torque control, the torque limit is specified by P03.17.

Functio n	Name	Default	Setting range	Description
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	0: Set by P03.16 (selected by P03.14) 0: Set by P03.17 (selected by P03.15) 1: Al1
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	2: AI2 3: AI3 5: High-speed pulse HDI1 8: Multi-step speed running 10: Modbus/Modbus TCP communication 12: Ethernet communication 14: EtherCAT/PROFINET/EtherNet IP communication

Functio n	Name	Default	Setting range	Description
				Others: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.
P03.16	Forward rotation upper-limit frequency in torque control for motor 1		0.00Hz-P00.03	Used to specify the frequency upper limits in torque control.
P03.17	Reverse rotation upper-limit frequency in torque control for motor 1	50.00Hz	(Max. output frequency)	P03.16 specifies the value when P03.14=1; while P03.17 specifies the value when P03.15=1.

6.8.2.3 Speed loop


The speed loop dynamic response characteristics in vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator.

The dynamic response of speed regulator can be accelerated by increasing the proportional gain or decreasing the integral time. However, too quick dynamic response of speed regulator can cause oscillations.

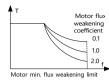
Recommended adjustment method: If the default settings can not meet the requirements, adjust the settings slightly. First, increase the proportional gain to ensure that the system does not oscillate; and then reduce the integration time, so that the system responds fast with small overshoot.

Improper PI parameter settings will cause large speed overshoot.

The switchover between the low-point frequency for switching and the high-point frequency for switching indicates the linear switchover between two groups of PI parameters. See the following figure.

Functio n	Name	Default	Setting range	Description
P03.00	Speed-loop proportional gain 1 of motor 1	20.0	0.0–200.0	Speed regulator PI parameters are divided into the low-speed group and high-speed group.
P03.01	Speed-loop integral time 1 of motor 1	0.200s	0.000-10.000s	When the running frequency is less than P03.02, the speed regulator PI parameters are
P03.02	Motor 1 switching low-point frequency	5.00Hz	0.00Hz-P03.05	P03.00 and P03.01. When the running frequency is greater than P03.05 (High-point frequency for
P03.03	Speed-loop proportional gain 2 of motor 1	20.0	0.0–200.0	switching), the speed regulator PI parameters are P03.03 and P03.04.
P03.04	Speed-loop integral time 2 of motor 1	0.200s	0.000–10.000s	-
P03.05	Switching high-point frequency of motor 1	10.00Hz	P03.02-P00.03	-
P03.06	Speed-loop output filter of motor 1	0	0–8	0–8 (corresponding to 0–28/10ms)
P03.36	Speed-loop differential gain of motor 1	0.00s	0.00-10.00s	-

6.8.2.4 Current loop


Generally, there is no need to adjust it. If the current waveform is not sinusoidal, the current loop band width can be reduced.

Functio n	Name	Default	Setting range	Description
P03.54	Current-loop band width of	400	0–2000	-
	motor 1			

6.8.2.5 Vector control flux weakening performance optimization

When running at a speed higher than the rated speed, the AM enters the flux weakening state. You can set P03.22 to change the flux-weakening curvature. A great flux-weakening control coefficient indicates a steep curve. The weakening coefficient in constant power zone is used in AM flux-weakening control, while the flux-weakening proportional gain and flux-weakening integral gain are specified by P03.26 and P03.33. The max. VFD output voltage is specified by P03.24.

If pre-exciting is performed for the motor when the VFD starts up, a magnetic field is built up inside the motor to improve the torque performance during the start process. The pre-exciting time is specified by P03.25.

Functio n	Name	Default	Setting range	Description
P03.22	Weakening coefficient in constant power zone for motor 1	100.0%	0.0-200.0%	A field weakening curve is selected through the field weakening coefficient.
P03.23	Lowest weakening point in constant power zone for motor 1	5%	5%-100.0%	the lowest weakening point in constant power zone is specified by P03.23.
P03.24	Max. voltage limit on motor 1	100.0%	0.0–120.0%	Used to set the max. VFD output voltage, which is a percentage of the motor rated voltage. Set the value according to onsite conditions.
P03.25	Pre-exciting time of motor 1	0.300s	0.000–10.000s	Pre-exciting is performed for the motor when the VFD starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process. Note: Pre-excitation can improve

Functio n	Name	Default	Setting range	Description
				the start-up capability of AM with loads. For an AM, set 0 to disable
				the pre-excitation process. For an
				SM, if P13.01 is set to an enabling
				option, the pre-excitation process
				is directly skipped.
	Flux-weakening			
P03.26	proportional	1000	0-8000	-
	gain of motor 1			
	Flux-weakening			
P03.33	integral gain of	100.0%	0.0-300.0%	-
	motor 1			

6.8.2.6 SM start control optimization

In the open-loop control mode, you can select a start control method by setting P13.01.

Functio n	Name	Default	Setting range	Description
	Initial pole			0: Do not detect
P13.01	detection	2	0–2	1: High-frequency superposition
	method			2: Pulse superposition

No detection: P13.01=0

The VFD startup command given is a direct startup command. In this mode, set P13.02 to a great value to increase the starting torque, which causes a start reversal phenomenon with an average load carrying capacity.

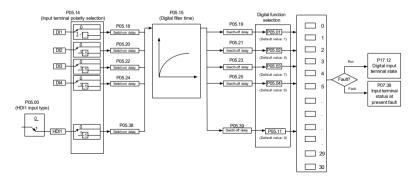
High-frequency current injection: P13.01=1

If a VFD startup command is given, the VFD autotunes the initial pole angle by means of high-frequency current injection and then automatically starts up after the autotuning. When P13.02 is valid and the initial pole angle based direction setting is accurate, the reverse rotation problem can be weakened or eliminated, but also the load carrying capacity can be improved.

Pulse superimposition: P13.01=2

This method is similar to that when P13.01=1. The difference is that the initial pole angle autotuning method is different. This method has higher identification accuracy with shorter time but sharper noise, but you can adjust the pulse current value by setting P13.06.

Functio n	Name	Default	Settingrange	Description
P13.02	Pull-in current 1	30.0%	-100.0%–100.0%	Pull-in current is the pole position orientation current; pull-in current 1 is valid within the lower limit of pull-in current switch-over frequency threshold. If you need to increase the start torque, increase the value of this function parameter properly. 100% corresponds to the motor rated current.
P13.03	Pull-in current 2	0.0%	-100.0%–100.0%	Specifies the pole position orientation current. It is valid within the upper limit of pull-in current switching frequency threshold. You do not need to change the value in most cases. 100% corresponds to the motor rated current.
P13.04	Pull-in current switching frequency	20.0%	0.0–200.0%	100% corresponds to the motor rated frequency.
P13.06	lse current setting	80.0%	0.0–300.0%	Used to set the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. 100% corresponds to the motor rated current.


6.9 Input and output

6.9.1 Digital input and

6.9.1.1 Digital input

The VFD carries four programmable digital input terminals and one HDI input terminal. The functions of all the digital input terminals can be programmed through function codes. The HDI input terminal can be set to act as a high-speed pulse input terminal or common digital input terminal by setting P05.00; if it is set to act as a high-speed pulse input terminal, you can also set HDI1 high-speed pulse input to serve as the frequency

reference input.

Note: Two different multifunction input terminals cannot be configured with a same function.

P05.01–P05.08, and P05.11 are used to set the functions of multifunction digital input terminals. Terminal functions are set as follows.

Setting	Function	Description
0	No function	The VFD does not act even if there is signal input. Set
0 No function		unused terminals to "no function" to avoid misaction.
1	Run forward (FWD)	External terminals are used to control the forward/reverse
2	Run reversely (REV)	running of the VFD.
3	Three-wire running	The terminal is used to determine the three-wire running
3	control (DI _{in})	control of the VFD. See P05.17 for details.
4	Forward jogging	For details about frequency of jogging running and
_	1	ACC/DEC time of jogging running, see the description for
5	Jog reversely	P08.08–P08.10.
	Coast to stop	The VFD blocks output, and the stop process of motor is
		uncontrolled by the VFD. This mode is applied in the
6		scenarios with large-inertia loads and without stop time
0		requirements.
		Its definition is the same as the coasting to stop specified by
		P01.08, and it is mainly used in remote control.
		External fault reset function, same as the reset function of
7	Fault reset	the STOP/RST key on the keypad. You can use this function
		to reset faults remotely.
		The VFD decelerates to stop, however, all the run
8	Pause running	parameters are in memory state, such as PLC parameter,
		wobbling frequency, and PID parameter. After this signal

Setting	Function		Descri	iption			
		disappears, the V	disappears, the VFD will revert to the state before stop.				
9	Fritainal farilt immit	When external fau	ult signal is tra	nsmitted to th	e VFD, the		
9	External fault input	VFD releases fault alarm and stops. Used to change the frequency increase/decrease command					
10	Increase frequency	Used to change t	he frequency	increase/decr	ease command		
10	setting (UP)	when the frequer	ncy is given by	y external terr	ninals.		
11	Decrease frequency	K1 UP terminal					
- ' '	setting (DOWN)	DOWN termina	al				
		K3/ UP/DOWN					
		zeroing termir GND	nal				
	Clear the frequency						
12	increase/decrease	The terminal use					
	setting	setting can clear	-	=	-		
		set by UP/DOWN,	-	=			
		the frequency give	en by main ref	erence freque	ncy command		
		channel.					
13	Switch between A	The function is use		etween the fre	equency		
	setting and B setting	setting channels.			_		
	Switch between	A frequency refere			,		
14	combination setting	channel can be sw	' - '				
	and A setting	channel set by P					
45	Switch between	channel can be sw	,				
15	combination setting	channel set by P			reference		
	and B setting	channel can be s	switched by f	unction 15.			
16	Multi-step speed	A + - + - - f 16 - +			tata a altabal		
	terminal 1	A total of 16-step states of these fo		e set by comb	oining digital		
17	Multi-step speed			halCD and m			
17	terminal 2	Note: Multi-step speed 1 is the LSB, and multi-step speed					
	Multi-step speed	4 is the MSB. Multi-step	Multi-step	Multi-ste	Multi-step		
18	terminal 3	speed 4	speed 3	p speed	speed 1		
	Multi-step speed	Bit3	Bit2	Bit1	BitO		
19	terminal 4	1.55	<u>"—</u>				
	Pause multi-step	The multi-step spe	eed selection f	function can b	e screened to		
20	speed running	keep the set value in the present state.					

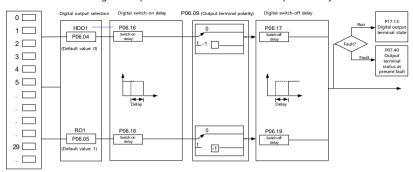
Setting	Function		De	escription							
21	ACC/DEC time	The status of	the two term	inals can be comb	oined to select						
21	selection 1	four groups o	f ACC/DEC ti	me.							
		Terminal 1	Terminal 1 Terminal 2 ACC/DEC time F								
	CC/DFC Line	OFF	OFF	ACC/DEC time 1	P00.11/P00.12						
22	ICC/DEC time selection 2	ON	OFF	ACC/DEC time 2	P08.00/P08.01						
	selection 2	OFF	ON	ACC/DEC time 3	P08.02/P08.03						
		ON	ON	ACC/DEC time 4	P08.04/P08.05						
23	Circuita DI C ataua manat	Used to clear t	the previous F	PLC state memory	information						
23	Simple PLC stop reset	and restart th	ne simple PL	C process.							
24	Davisa simple DLC	Used to pause	the simple P	LC. When the fund	tion is						
24	Pause simple PLC	revoked, the	simple PLC i	resumes the runr	ning.						
25	Pause PID control			ily, and the VFD r	maintains						
23	rause FID Contion	current freque	ency output.								
	Pause wobbling	The VFD paus	ses at current	t output. After thi	s function is						
26	frequency	1		oling-frequency op							
	(stop at present	current frequency.									
	frequency)										
	Reset wobbling										
27	frequency (back to center	The set freque	The set frequency of VFD reverts to center frequency.								
	frequency)										
28	Reset the counter	The counter is	cloared								
20	Switch between speed	The counter is	cleared.								
29	control and torque	The VFD switch	hes from torq	ue control mode t	to speed						
	control	control mode	e, or vice ver	sa.							
		Used to ensure	e the VFD is n	ot impacted by ex	ternal signals						
30	Disable ACC/DEC	(except for stop command), and maintains the present									
		output frequency.									
31	Trigger the counter	Used to enabl	e the counte	r to count pulses.							
		When P08.31	(Motor switc	hover selection) is	s set to terminal,						
32	Motor switching	if the terminal is invalid, motor 1 is selected; if the terminal									
	terminal	is valid, motor 2 is selected.									
		When the ter	minal is close	ed, the frequency	value set by the						
	Clear the frequency	UP/DOWN key can be cleared and restored to the frequency									
33	increase/decrease	given by frequ	ency comma	nd channel; when	the terminal is						
	setting temporarily	opened, it is changed to the frequency value after									
		frequency inc	rease/decre	ase setting.	frequency increase/decrease setting.						

Setting	Function	Description
34	DC braking	The VFD starts DC brake immediately after the command becomes valid.
35	Clear the frequency increase/decrease setting temporarily	When the terminal is closed, the frequency value set by UP/DOWN can be cleared to restore the reference frequency to the frequency given by frequency command channel; when the terminal is opened, it restores to the frequency value after frequency increase/decrease setting.
36	Switch the running command channel to keypad	When the function is enabled, the running command channel is switched to keypad. When the function is disabled, the running command channel is restored to the previous setting.
37	Switch the running command channel to terminal	When the function is enabled, the running command channel is switched to terminal. When the function is disabled, the running command channel is restored to the previous setting.
38	Switch the running command channel to communication	When the function is enabled, the running command channel is switched to communication. When the function is disabled, the running command channel is restored to the previous setting.
39	Pre-exciting command	When the function is enabled, motor pre-exciting is started until the function becomes invalid.
40	Clear power consumption quantity	After this command becomes valid, the power consumption quantity of the VFD will be zeroed out.
41	Keep power consumption quantity	When the function is enabled, the present operation of the VFD does not impact the power consumption quantity.
42	Switch the setting source of braking torque upper limit to keypad	The torque upper limit is set through the keypad when the command is valid.
56	Emergency stop	When the function is enabled, the motor decelerates to stop in emergency manner according to the time specified by P01.26.
57	Motor overtemperature fault input	When there is motor overtemperature fault input, the motor stops due to the fault.
61	Switch PID polarities	Used to switch the output polarity of PID. It is used together with P09.03.

Related parameters are listed in the following.

Functio n	Name	Default	Setting range	Description			
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input			
P05.01	Function of DI1	1					
P05.02	Function of DI2	4		For details, see the preceding			
P05.03	Function of DI3	7		table.			
P05.04	Function of DI4	0		DI1-DI4 and HDIA are the			
P05.05	Function of DI5	0	0–95	terminals on the control board,			
P05.06	Function of DI6	0		while DI5-DI8 are achieved			
P05.07	Function of DI7	0		through the virtual terminal			
P05.08	Function of DI8	0		functions set by P05.16.			
P05.11	Function of HDI1	0					
P05.14	out terminal polarity	0x000	0x000-0x7FF	Used to set the input terminal polarity. When a bit is 0, the input terminal is positive. When a bit is 1, the input terminal is negative. Bit0 Bit1 Bit2 Bit3 Bit4 DI1 DI2 DI3 DI4 DI5 Bit5 Bit6 Bit7 Bit8-bit9 Bit10 DI6 DI7 DI8 Reserved HDI1 Note: For Modbus/Modbus TCP communication, the virtual terminal address is 0x200A. For other communication protocols, see the PZD receiving function code options.			
P05.15	input filter time	0.010	0.000-1.000s	Used to specify the sampling filter time of the DI1–DI8, and HDI1 terminals. In strong interference cases, increase the value to avoid maloperation.			
P05.16	Virtual terminal setting	0x000	0x000-0x7FF	Setting range: 0x000-0x7FF (0: disable; 1: enable)			

Functio n	Name	Default	Setting range	Description					
				Bit0 Bit1 Bit2 Bit3 Bit4					
				DI1 DI2 DI3 DI4 DI5					
				Bit5 Bit6 Bit7 Bit8-bit9 Bit10					
				DI6 DI7 DI8 Reserved HDI1					
			Note: After virtual terminals enabled, the terminal states only be modified through						
				communication. For					
				Modbus/Modbus TCP					
				communication, the virtual					
				terminal address is 0x200A. For					
				other communication protocols,					
				see the PZD receiving function					
				code options.					
P05.17	Terminal control mode	0	0–3	P05.17 specifies the running mode in terminal control.					
P05.18	DI1 switch-on delay	0.000s		0: Two-wire control 1, the enabling					
P05.19	DI1 switch-off delay	0.000s		consistent with the direction. This					
P05.20	DI2 switch-on delay	0.000s		mode is widely used. The defined					
P05.21	DI2 switch-off delay	0.000s		FWD/REV terminal command					
P05.22	DI3 switch-on delay	0.000s		determines the motor rotation					
P05.23	DI3 switch-off delay	0.000s		direction.					
P05.24	DI4 switch-on delay	0.000s		PWD REV command					
P05.25	DI4 switch-off delay	0.000s		OFF OFF Stop					
P05.26	DI5 switch-on delay	0.000s		K2 running running					
P05.27	DI5 switch-off delay	0.000s	0.000-50.000s	GND ON ON Hold					
P05.28	DI6 switch-on delay	0.000s	0.000-30.0003	1: Two-wire control 2, the enabling					
P05.29	DI6 switch-off delay	0.000s		separated from the direction. In					
P05.30	DI7 switch-on delay	0.000s		this mode, FWD is the enabling					
P05.31	DI7 switch-off delay	0.000s		terminal. The direction depends					
P05.32	DI8 switch-on delay	0.000s		on the defined REV state.					
P05.33	DI8 switch-off delay	0.000s		RWD REV Running command					
P05.38	HDI1 switch-on delay	0.000s		K1					
P05.39	HDI1 switch-off delay	0.000s		GND OFF ON Stop ON ON Reverse running					


Functio n	Name	Default	Setting range	Description			
				2: Three-wire control 1. This mode			
				defines DI _{In} as the enabling			
				terminal, and the running			
				command is generated by FWD,			
				while the direction is controlled by			
				REV. During running, the DI _{in}			
				terminal needs to be closed, and			
				when terminal FWD generates a			
				rising edge signal, the VFD starts to			
				run in the direction set by the state			
				of terminal REV; the VFD needs to			
				be stopped by disconnecting			
				terminal Dl _{in} .			
				SB1			
				FWD			
				SB2 DI _{in}			
				K REV			
				GND			
				The direction control is as follows			
				during running:			
				Dl _{in} REV Previous Present direction			
				FWD run REV run			
				ON OFF→ON Run Run			
				REV run Run Run Run			
				REV run FWD run			
				ON ON→OFF Run Run FWD run REV run			
				Run Run			
				ON→OFF ON Decelerate to stop			
				DI _{in} : Three-wire control; FWD:			
				Forward running; REV: Reverse			
				running			
				3: Three-wire control 2. This mode			
				defines Dl _{In} as the enabling			
				terminal, and the running			

Functio		5 6 11	o		_			
n	Name	Default	Setting range		Descr	iption		
				command is generated by FWD or				
				REV, but the direction is controlled				
				by both F	WD and	REV. D	uring	
				running, t	the DI _{in} t	erminal	needs to	
				be closed	, and te	rminal F	WD or	
				REV gene	rates a r	ising ed	lge signal	
				to contro	I the run	ining an	ıd	
				direction	of the VI	FD; the \	/FD needs	
				to be stop	oped by	disconr	necting	
				terminal [Ol _{in} .			
					SB1			
						WD		
						Dl _{in}		
					SB3			
					~ 	REV		
						GND		
				Dlin	FWD	REV	Running	
						ON	direction FWD run	
				ON	OFF→ON	OFF	FWD run	
				ON	ON OFF	OFF→ON	REV run	
				ON→OFF	OFF -		REV run Decelerate	
							to stop	
				DI _{in} : Three				
				Forward r	unning;	REV: Re	everse	
				running				
				∠Note: □				
				running m				
				terminal			•	
				due to a	•		-	
							does not	
				run again after the stop command				
				disappears even if the control terminal FWD/REV is still valid. To				
				make the				
				trigger F\		-		
				example,		-		
				example,	r LC SIII	gie-cyc	ie stop,	

Functio n	Name	Default	Setting range	Description				
				r← Switch-on → r← Switch-off ◆				5.38 ical nals
P07.39	Input terminal status at present fault	0x0000	0x0000-0xFFFF	Displays the present digital input terminal state of the VFD.				input
				Displays the present digital outerminal state of the VFD.			utput	
D17.10	Digital input	0000	0.000 0.155	Bit0	Bit1	Bit2	Bit3	Bit4
P17.12	terminal state	0x000	0x000-0x1FF	DI1	DI2	DI3	DI4	DI5
				Bit5	Bit6	Bit7	Bit8-bit9	Bit10
				DI6	DI7	DI8	Reserved	HDI1

6.9.1.2 Digital output

The VFD carries one relay output terminal (RO1) and one high-speed pulse output (HDO1) terminal. All the digital output terminal functions can be specified by function codes.

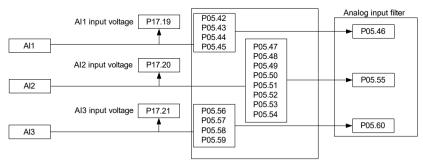
The following table lists the options of function parameters P06.04–P06.05. A same output terminal function can be repeatedly selected.

Note: To use HDO1 to output any of the following functions, you need to select HDO1 as digital output by setting P06.00 to 1.

Setting	Function	Description		
0	Invalid	The output terminal does not have any function.		
1	Running	The ON signal is output when there is frequency output during running.		
2	Running forward	The ON signal is output when there is frequency output during forward running.		
3	Running reversely	The ON signal is output when there is frequency output during reverse running.		
4	Jogging	The ON signal is output when there is frequency output during jogging.		
5	VFD fault	The ON signal is output when a VFD fault occurred.		
6	Frequency level detection FDT1	When the output frequency exceeds the FDT level detection value, the ON signal is output. When the		
7	Frequency level detection FDT2	output frequency drops below the frequency corresponding to (FDT level detection value - FDT lagging detection value), the OFF signal is output. FDT1 and FDT2 level detection values are specified by P08.32 and P08.34, and lagging detection values are specified by P08.33 and P08.35.		
8	Frequency reached	When the output frequency falls within the positive and negative tolerance band of the set frequency, the ON signal is output. The positive and negative tolerance band is specified by P08.36.		
9	Running in zero speed	The ON signal is output when the VFD output frequency and reference frequency are both zero.		
10	Upper limit frequency reached	The ON signal is output when the running frequency reaches the upper limit frequency.		
11	Lower limit frequency reached	The ON signal is output when the running frequency reaches the lower limit.		
12	Ready to run	The ON signal is output when main circuit and control circuit powers are established, the protection functions do not act, and the VFD is ready to run.		
13	Pre-exciting	The ON signal is output when the VFD is in pre-exciting.		
14	Overload alarm	The ON signal is output after the alarm time elapsed based on the alarm threshold. The overload alarm is configured by function codes P11.08–P11.10.		

Setting	Function	Description		
		The ON signal is output after the alarm time elapsed		
15	Underload alarm	based on the alarm threshold. The underload alarm is		
		configured by function codes P11.11– P11.12.		
16	Simple PLC stage	When the present state of the simple PLC is completed,		
16	completed	it outputs a signal.		
17	Simple PLC cycle	When a single cycle of the simple PLC is completed, it		
17	completed	outputs a signal.		
	Cat as water a walling	The ON signal is output when the counting value		
18	Set counting value	reaches the value specified by P08.25 if the counting		
	reached	function is enabled.		
	Chasified counting value	The ON signal is output when the counting value		
19	Specified counting value reached	reaches the value specified by P08.26 if the counting		
	reached	function is enabled.		
20	5 . I 6 I. 1 . II I	The ON signal is output when the fault is an external		
20	External fault is valid	fault (E17).		
		When the value of the specified function code exceeds		
		the set function code threshold, the ON signal is output.		
		When the value of the specified function code is less		
	Specified function code	than (Function code threshold - Hysteresis width), the		
21	value greater than	OFF signal is output. The specified function code is set		
	threshold	by P06.56 (for example, if it is set to 17.00, the specified		
		function code is P17.00).		
		The function code threshold is set by P06.57, and the		
		hysteresis width is set by P06.58.		
22	Running time reached	The ON is output when the single operation time of VFD		
22		reaches the time specified by P08.27.		
	Modbus/ Modbus TCP	A signal is output based on the virtual output terminal		
23		of Modbus communication (communication address		
23	communication virtual	0x200B). When the value is 1, the ON signal is output;		
	terminal output	when the value is 0, the OFF signal is output.		
25	Ethernet	A signal is output based on the value set through		
	communication virtual	communication. When the value is 1, the ON signal is		
	terminal output	output; when the value is 0, the OFF signal is output.		
26	DC bus voltage	When the bus voltage is above the inverter		
	established	undervoltage, the output is valid.		
29	STO action	When an STO fault occurs, the output is valid.		

Setting	Function	Description
34	EtherCAT/PROFINET/Eth	A signal is output based on the value set through
	erNet IP communication	communication. When the value is 1, the ON signal is
	virtual terminal output	output; when the value is 0, the OFF signal is output.
37	Any frequency reached	The ON signal is output when the ramp reference
		frequency is greater than the value specified by P08.37
		and this situation lasts the time specified by P08.38.


Related parameters are listed in the following.

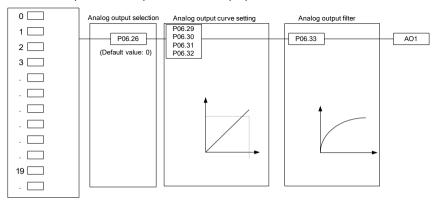
	Related parameters are listed in the following.						
Functio n	Name	Default	Setting range	Description			
P06.00	HDO1 output type	0	0–1	0: High-speed pulse output 1: Digital output			
P06.04	HDO1 output	0	0–63	For details, see the preceding table.			
P06.05	RO1 output	1					
P06.09	Output terminal polarity selection	0x00	0x00-0x1F	When a bit is 0, the output terminal is positive. When a bit is 1, the output terminal is negative. Bit 0-Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1			
P06.16	HDO1 switch-on delay	0.000s	0.000–50.000s	Used to specify the delay time corresponding to the electrical level			
P06.17	HDO1 switch-off delay			changes when the programmable output terminals switch on or switch			
P06.18	RO1 switch-on delay			Off. Y electric level			
P06.19	RO1 switch-off delay			Y valid Invalid W// Valid W// invalid			
P17.13	Digital output terminal state	0x00	0x00-0x1F	Displays the present digital output terminal state of the VFD. Bit 0-Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1			
P07.40	Output terminal state at present fault	0x0000	0x0000-0xFFFF	Displays the digital output terminal state of the VFD at the present fault. Bit 0-Bit 2: Reserved Bit 3: HDO1 Bit 4: RO1			

6.9.2 Analog input and output terminal

6.9.2.1 Analog input

The VFD carries two analog input terminals Al1 and Al2. The input range of Al1 is 0–10V/0–20mA, and whether Al1 uses voltage input or current input can be specified by P05.76. The input range of Al2 is -10–10V. The input source of Al3 is the keypad potentiometer. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference values correspond to the max. value and min. values.

Functio n	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0		
P00.07	Setting channel of B frequency command	1	0–15	
P03.11	Torque setting method selection	0	0–15	
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	1: Al1 2: Al2 3: Al3
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	


Functio n	Name	Default	Setting range	Description
P03.18	Setting source of electromotive torque upper limit for motor 1	0	0–15	
P03.19	Setting source of braking torque upper limit for motor 1	0	0–15	1: Al1 2: Al2
P04.13	Voltage setting channel selection	0	0–15	13: Al3
P09.00	PID reference source selection	0	0–15	
P09.02	PID feedback source selection	0	0–15	
P05.42	Al1 lower limit	0.00V	0.00V-P05.44	
P05.43	Corresponding setting of Al1 lower limit	0.0%	-300.0–300.0%	The function codes define the
P05.44	Al1 upper limit	10.00V	P05.42-10.00V	relationship between the analog input voltage and its
P05.45	Corresponding setting of Al1 upper limit	100.0%	-300.0–300.0%	corresponding setting. When the analog input voltage exceeds the range from the upper limit to the
P05.46	Al1 input filter time	0.030s	0.000-10.000s	lower limit, the upper limit or lower limit is used.
P05.47	Al2 lower limit	-10.00V	0.00V-P05.49	When the analog input is current
P05.48	Corresponding setting of AI2 lower limit	-100.0%	-300.0–300.0%	input, 0mA–20mA current corresponds to 0V–10V voltage. In different applications, 100.0%
P05.49	AI2 middle value 1	0.00V	P05.47-P05.51	of the analog setting corresponds
P05.50	Corresponding setting of AI2 middle value 1	0.0%	-300.0–300.0%	to different nominal values. See the descriptions of each application section for details.
P05.51	AI2 middle value 2	0.00V	P05.49-P05.53	The following figure illustrates
P05.52	Corresponding setting of Al2 middle value 2	0.0%	-300.0–300.0%	the cases of several settings:

Functio n	Name	Default	Setting range	Description
P05.53	Al2 upper limit	10.00V	P05.51-10.00V	Corresponding setting
P05.54	Corresponding setting of AI2 upper limit	100.0%	-300.0–300.0%	0 10V 20mA
P05.55	Al2 input filter time	0.030s	0.000-10.000s	
P05.56	AI3 lower limit	0.00V	0.00V-P05.58	▲ Corresponding setting
P05.57	Corresponding setting of AI3 lower limit	0.0%	-300.0–300.0%	100%
P05.58	AI3 upper limit	10.00V	P05.56-10.00V	l laz
P05.59	Corresponding setting of AI3 upper limit	100.0%	-300.0–300.0%	Input filter time: to adjust the
P05.60	nput filter time	0.030s	0.000–10.000s	sensitivity of analog input. Increasing the value properly can enhance analog input anti-interference but may reduce the sensitivity of analog input. Note: Al1 supports the 0–10V/0–20mA input. When Al1 selects the 0–20mA input, the corresponding voltage of 20mA is 10V. Al2 supports the -10–+10V input. When Al2 selects the 0–20mA input, the corresponding voltage of 20mA is 10V.
P05.76	Al input signal type selection	0x0	0x0-0x3	Bit0: Al1 input signal type selection 0: Voltage 1: Current Bit1: Al2 input signal type selection 0: Voltage 1: Current
P17.19	Al1 input voltage	0.00V	0.00-10.00V	Displays the AI1 input signal.

Functio n	Name	Default	Setting range	Description
P17.20	Al2 input voltage	0.00V	0.00V-10.00V	Displays the AI2 input signal.
P17.21	Al3 input voltage	0.00V	0.00V-10.00V	Displays the AI3 input signal.

6.9.2.2 Analog output

The VFD carries one analog output terminal (supporting the output of 0–10V/0–20mA). Analog output signal can be filtered separately, and the proportional relationship can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signal can output motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

AO1 output relationship description:

(The min. value and max. value of the output correspond to 0.% and 100.00% of the analog default output. The actual output voltage corresponds to the actual percentage, which can be set through function codes.) Output functions are as follows.

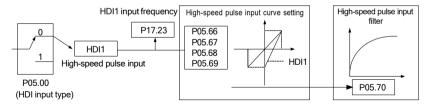
Setting	Function	Description	
0	Running frequency	0-Max. output frequency	
1	Set frequency	0-Max. output frequency	
2	Ramp reference frequency	0–Max. output frequency	
2	Rotation speed of	0–Synchronous speed corresponding to max. output	
3	running	frequency	
4	Output current (relative to the VFD)	0-Twice the VFD rated current	
5	Output current (relative	O Trains the another retail assessed	
	to motor)	0–Twice the motor rated current	

Setting	Function	Description	
6	Output voltage	0–1.5 times the VFD rated voltage	
7	Output power	0–Twice the motor rated power	
		0–Twice the motor rated current. A negative value	
8	Set torque value (bipolar)	corresponds to 0.0% by default.	
9	Output torque (absolute	0–Twice the motor rated torque, or -Twice the motor	
9	value)	rated torque-0	
10	Al1 input value	0-10V/0-20mA	
11	Al2 input value	0V–10V. A negative value corresponds to 0.0% by default.	
12	AI3 input value	0–10V	
14	High-speed pulse HDI1	0.00-50.00Hz	
17	input	0.00 50.00112	
	Value 1 set through		
16	Modbus/Modbus TCP	0–1000	
	communication		
	Value 2 set through		
17	Modbus/Modbus TCP	0–1000	
	communication		
20	Value 1 set through	0–1000	
	Ethernet communication		
21	Value 2 set through	0–1000	
	Ethernet communication		
22	Value 1 set through EtherCAT/PROFINET/Eth	0.1000	
22	erNet IP communication	0–1000	
	Value 2 set through		
23	EtherCAT/PROFINET/Eth	0-1000	
23	erNet IP communication	0-1000	
	Cirice ii Communication	0–Three times the motor rated current. A negative value	
24	Torque current (bipolar)	corresponds to 0.0% by default.	
		0–Three times the motor rated current. A negative value	
25	Exciting current	corresponds to 0.0% by default.	
		0–Max. output frequency. A negative value corresponds	
26	Set frequency (bipolar)	to 0.0% by default.	
	Ramp reference	0–Max. output frequency. A negative value corresponds	
27	frequency (bipolar)	to 0.0% by default.	
		0–Synchronous rotation speed corresponding to max.	
28	Rotational speed	output frequency. A negative value corresponds to 0.0%	
	(bipolar)	by default.	

Setting	Function	Description
21	Rotation speed of	O. Tion the greatest stated as a short second
31	running	0–Twice the motor rated synchronous rotation speed
22	Out and the same (his also)	0-Twice the motor rated torque. A negative value
32	Output torque (bipolar)	corresponds to 0.0% by default.
22	AIAO detected	AO output temperature in the AIAO temperature
33	temperature output	detection.
		The output value is calculated as follows:
40	I function code value	(Specified function value/Base value) * 100.00% + Offset
40		The function is configured by function codes P06.59–
		P06.61.

Related parameters are listed in the following.

,				
Functio n	Name	Default	Setting range	Description
P06.26	AO1 output	0	0–63	For details, see the preceding table.
P06.29	AO1 output lower limit	0.0%	-300.0%- P06.31	The function codes define the relationship between the output
P06.30	AO1 output corresponding to lower limit	0.00V	0.00-10.00V	value and analog output. When the output value exceeds the allowed range, the output uses
P06.31	AO1 output upper limit	100.0%	P06.29- 300.0%	the lower limit or upper limit. When the analog output is
P06.32	AO1 output corresponding to upper limit	10.00V	0.00-10.00V	current output, 1mA equals 0.5V. In different cases, the corresponding analog output of
P06.33	AO1 output filter time	0.000s	0.000–10.000s	100% of the output value is different. AO 10V (20mA) 100.0%


6.9.3 High-speed pulse input and output terminal

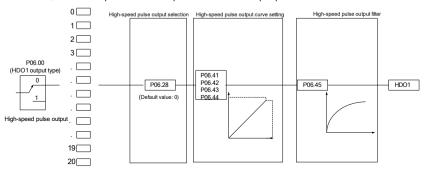
6.9.3.1 High-speed pulse input

The VFD supports one high-speed pulse input HDI1. HDI1 input can be filtered separately,

and the corresponding reference curve can be set by adjusting the reference values correspond to the max. value and min. values.

✓Note: HDI1 high-speed pulse input ranges from 0.000kHz to 50.000kHz.

Related parameters are listed in the following.


Functio n	Name	Default	Setting range	Description
P00.06	Setting channel of A frequency command	0	0–15	
P00.07	Setting channel of B frequency command	1	0–15	
P03.11	Torque setting method selection	0	0–15	
P03.14	Forward rotation upper-limit frequency source in torque control for motor 1	0	0–15	5: High-speed pulse HDI1 Note: To select high-speed pulse setting, set P05.00 to 0.
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	0	0–15	

Functio n	Name	Default	Setting range	Description
P03.18	Setting source of electromotive torque upper limit for motor	0	0–15	
P03.19	Setting source of braking torque upper limit for motor	0	0–15	
P04.13	Voltage setting channel selection	0	0–15	
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.66	HDI1 lower limit frequency	0.000kHz	0.000kHz- P05.68	-
P05.67	Corresponding setting of HDI1 lower limit frequency	0.0%	-300.0–300.0%	-
P05.68	HDI1 upper limit frequency	50.000 kHz	P05.66- 50.000kHz	-
P05.69	Corresponding setting of HDI1 upper limit frequency	100.0%	-300.0–300.0%	-
P05.70	HDI1 frequency input filter time	0.030s	0.000-10.000s	-
P17.23	HDI1 input frequency	0.000kHz	0.000- 50.000kHz	-

6.9.3.2 High-speed pulse output

The VFD carries one high-speed pulse output terminal. High-speed pulse output signals

can be filtered separately, and the proportional relationship can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. High-speed pulse output signals can output the motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

HDO1 output relationship description:

(The min. value and max. value of the output correspond to 0.% and 100.00% of the default output. The actual output pulse frequency corresponds to the actual percentage, which can be set through function codes.)

Note: To use HDO1 to output any of the following functions, you need to select HDO1 as high-speed pulse output by setting P06.00 to 1. The high-speed pulse output ranges from 0.00kHz to 50.00kHz. Output functions are as follows.

Setting	Function	Description
0	Running frequency	0-Max. output frequency
1	Set frequency	0-Max. output frequency
2	Ramp reference frequency	0–Max. output frequency
3	Rotation speed of running	0–Synchronous speed corresponding to max. output frequency
4	Output current (relative to the VFD)	0–Twice the VFD rated current
5	Output current (relative to motor)	0–Twice the motor rated current
6	Output voltage	0–1.5 times the VFD rated voltage
7	Output power	0–Twice the motor rated power
8	Set torque value (bipolar)	0–Twice the motor rated current. A negative value corresponds to 0.0% by default.
9	Output torque (absolute value)	0–Twice the motor rated torque, or -Twice the motor rated torque–0
10	Al1 input value	0-10V/0-20mA

Setting	Function	Description
11	AI2 input value	0V–10V. A negative value corresponds to 0.0% by
	Aiz iliput value	default.
12	AI3 input value	0–10V
14	High-speed pulse HDI1 input	0.00-50.00Hz
	Value 1 set through	
16	Modbus/Modbus TCP	0–1000
	communication	
47	Value 2 set through	0.1000
17	Modbus/Modbus TCP	0–1000
	communication Value 1 set through Ethernet	
20	communication	0–1000
21	Value 2 set through Ethernet	0–1000
21	communication	0-1000
	Value 1 set through	
22	EtherCAT/	0–1000
	PROFINET/EtherNet IP	
	communication	
	Value 2 set through	
23	EtherCAT/ PROFINET/EtherNet IP	0–1000
	communication	
	Communication	0–Three times the motor rated current. A negative
24	Torque current (bipolar)	value corresponds to 0.0% by default.
		0–Three times the motor rated current. A negative
25	Exciting current	value corresponds to 0.0% by default.
26	Cat fraguency (binalar)	0–Max. output frequency. A negative value
20	Set frequency (bipolar)	corresponds to 0.0% by default.
27	Ramp reference frequency	0–Max. output frequency. A negative value
	(bipolar)	corresponds to 0.0% by default.
		0–Synchronous rotation speed corresponding to
28	Rotational speed (bipolar)	max. output frequency. A negative value
		corresponds to 0.0% by default.
31	Rotation speed of running	0–Twice the motor rated synchronous rotation
		speed
		0–Twice the motor rated torque. A negative value
32	Output torque (bipolar)	corresponds to 0.0% by default.

Setting	Function	Description	
22	AIAO detected temperature	AO output temperature in the AIAO temperature	
33	output	detection.	
		The output value is calculated as follows:	
40	Specified function code value	(Specified function value/Base value) * 100.00% +	
40		Offset The function is configured by function codes	
		P06.59-P06.61.	

Related parameters are listed in the following.

Functio n	Name	Default	Setting range	Description
				0: High-speed pulse output
P06.00	1 output type	0	0–1	1: Digital output
F00.00		0	0-1	✓Note: HDO1 uses push-pull
				output.
DOC 41	HDO1 output	0.00/	200.00/	
P06.41	lower limit	0.0%	-300.0%- P06.43	-
	HDO1 output			
P06.42	corresponding	0.00kHz	0.00-50.00Hz	-
	to lower limit			
DOC 42	HDO1 output	100.00/	DOC 44 200.00/	
P06.43	upper limit	100.0%	P06.41- 300.0%	-
	HDO1 output			
P06.44	corresponding	50.00kHz	0.00-50.00Hz	-
	to upper limit			
DOC 45	HDO1 output	0.000-	0.000 10.000-	
P06.45	filter time	0.000s	0.000-10.000s	-

6.10 RS485 communication

The communication addresses on the communication network are unique, which is the basis of the point-to-point communication between the host controller and VFD. If the slave communication address in the message frame sent from the host controller is set to 0, it serves as a broadcast communication address. All slaves on the Modbus bus will receive the frame, but the slaves will not respond to it. The local communication address is specified by P14.00. The communication response delay is specified by P14.03, and the RS485 communication timeout time is specified by P14.04.

There are four transmission error processing methods, which can be selected through P14 05

Functio n	Name	Default	Setting range	Description
P14.00	Local communication address	1	1–247	The communication address of a slave cannot be set to 0.
P14.01	Communication baud rate setting	4	0–7	Used to set the rate of data transmission between the host controller and the VFD. 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 115200 bps Note: The baud rate set on the VFD must be consistent with that on the host controller. Otherwise, the communication fails. A greater baud rate indicates faster communication.
P14.02	ta bit check setting	1	0–5	The data format set on the VFD must be consistent with that on the host controller. Otherwise, the communication fails. 0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU
P14.03	Communication response delay	5ms	0–200ms	Indicates the communication response delay, that is, the interval from when the VFD completes receiving data to when it sends response data to the host controller. If the response delay is shorter than the rectifier

Functio n	Name	Default	Setting range	Description
				processing time, the rectifier sends response data to the host controller after processing data. If the delay is longer than the rectifier processing time, the rectifier does not send response data to the host controller until the delay is reached although data has been processed.
P14.04	RS485 communication timeout time	0.0s	0.0 (invalid)– 60.0s	When P14.04 is set to 0.0, the communication timeout time is invalid. When P14.04 is set to a non-zero value, the system reports the "RS485 communication fault" (E18) if the communication interval exceeds the value. In general, the function code is set to 0.0. When continuous communication is required, you can set the function code to monitor communication status.
P14.05	nsmission fault processing	0	0–3	0: Report an alarm and coast to stop 1: Keep running without reporting an alarm 2: Stop in enabled stop mode without reporting an alarm (applicable only to communication mode) 3: Stop in enabled stop mode without reporting an alarm (applicable to any mode)
P14.06	Modbus communication processing action selection	0x0000	0x0000-0x1111	Ones place: 0: Respond to write operations

Functio n	Name	Default	Setting range	Description
				protection is invalid. 1: Communication password protection is valid. Hundreds place: 0: User-defined addresses specified in group P16 are invalid. 1: User-defined addresses specified in group P16 are valid. Thousands place: 0: CRC failure, with response of
				error type 0x06 1: CRC checksum failure, without response

6.11 Monitoring parameters

Monitoring parameters mainly fall in groups P07and P17, which are used to view and analyze the VFD control and use status. The monitored content is listed in the following.

Group	Туре	Monitored content
C D07	118.41	VFD information, module temperature, run time, power
Group P07	HMI	usage, fault history, and software version.
		Frequency information
		Current information
		Voltage information
Group P17	asic status	Torque and power information
Group F17	viewing	Input terminal information
		Output terminal information
		PID regulator information
		Control word and status word information

6.11.1 Group P07—Human-machine

Functio n	Name	Default	Setting range	Description
P07.12	Inverter module temperature	0.0°C	-20.0–120.0°C	-
P07.13	Control software version	Version depended	1.00–655.35	-

Functio n	Name	Default	Setting range	Description
P07.14	Drive software version	Version depended	1.00–655.35	-
P07.17	VFD model	0x0000	0x0000-0xFFFF	Bit0-bit3: Reserved Bit4-bit11: Chip type and manufacturer 0x00: DSP(TI) 0x01-0xFF: Reserved Bit12-bit15: VFD series 0x0: DRV-240 0x1-0xF: Reserved Note: After power failure, the function parameters are saved to the control board rather than the drive board.
P07.18	VFD rated power	Model depended	0.2–3000.0kW	-
P07.19	VFD rated voltage	Model depended	50-1200V	-
P07.20	VFD rated current	Model depended	0.01-600.00A	-
P07.27	Present fault type	0	0–588	0: No fault 4: Overcurrent during ACC (E4)
P07.28	Last fault type	0	0–588	5: Overcurrent during DEC (E5)
P07.29	2nd-last fault type	0	0-588	6: Overcurrent during constant speed running (E6)
P07.30	3rd-last fault type	0	0–588	7: Overvoltage during ACC (E7) 8: Overvoltage during DEC (E8)
P07.31	4th-last fault type	0	0–588	9: Overvoltage during constant speed running (E9)
P07.32	-last fault type	0	0–588	10: DC bus undervoltage (E10) 11: Motor overload (E11) 12: VFD overload (E12) 13: Phase loss on input side (E13) 14: Phase loss on output side (E14) 16: Inverter module overheat (E16) 17: External fault (E17) 18: Modbus/Modbus TCP

Functio				
n	Name	Default	Setting range	Description
				communication fault (E18)
				19: Current detection fault (E19)
				20: Motor autotuning fault (E20)
				21: EEPROM operation error (E21)
				22: PID feedback offline fault (E22)
				23: Braking unit fault (E23)
				24: Running time reached (E24)
				25: Electronic overload (E25)
				27: Parameter upload error (E27)
				28: Parameter download error
				(E28)
				30: Ethernet communication fault
				(E30)
				32: To-ground short-circuit fault
				(E32)
				34: Speed deviation fault (E34)
				35: Mal-adjustment fault (E35)
				36: Underload fault (E36)
				40: STO safe torque off (E40)
				41: STO channel 1 safety circuit
				exception (E41)
				42: STO channel 2 safety circuit
				exception (E42)
				43: Exception in both STO channels
				1 and 2 (E43)
				44: STO safety code FLASH CRC
				fault (E44)
				57: PROFINET communication
				timeout fault (E57)
				59: Motor overtemperature fault
				(E59)
				60: Communication card
				identifying failure (E60)
				63: Communication card
				communication timeout fault (E63)
				66: EtherCAT communication
				timeout fault (E66)
				92: Al1 disconnection fault (E92)

Functio				
n	Name	Default	Setting range	Description
				93: AI2 disconnection fault (E93)
				94: Al3 disconnection fault (E94)
				95: EtherNet IP communication
				timeout (E95)
				96: No upgrade bootload (E96)
				587: Dual-CPU communication
				fault 1 (E587)
				588: Dual-CPU communication
				fault 2 (E588)
				Others: Reserved
	Running			
P07.33	frequency at	0.00Hz	0.00-600.00Hz	-
	present fault			
	Ramp reference			
P07.34	frequency at	0.00Hz	0.00-600.00Hz	-
	present fault			
P07.35	Output voltage	0V	0–1200V	_
	at present fault	•	0 12001	
P07.36	Output current	0.00A	0.00-630.00A	-
	at present fault			
P07.37	Bus voltage at	0.0V	0.0-2000.0V	_
	present fault			
P07.38	Temperature at	0.0°C	-20.0–120.0°C	_
	present fault			
B07.30	Input terminal	0.000	0 0000 0 5555	
P07.39	status at present fault	000000	0x0000-0xFFFF	-
	Output terminal			
P07.40	state at present	0x0000	0x0000-0xFFFF	
F07.40	fault	000000	OXOOOO—OXFFFF	-
	Running			
P07.44	frequency at last	0.00Hz	0.00-600.00Hz	
107.44	fault	0.00112	0.00 000.00112	
	Ramp reference			
P07.45	frequency at last	0.00Hz	0.00-600.00Hz	-
	fault			
		I	J	L

Functio n	Name	Default	Setting range	Description
P07.46	Output voltage at last fault	0V	0-1200V	-
P07.47	Output current at last fault	0.00A	0.00-630.00A	-
P07.48	Bus voltage at last fault	0.0V	0.0-2000.0V	-
P07.49	Temperature at last fault	0.0°C	-20.0–120.0°C	-
P07.50	Input terminal state at last fault	0x0000	0x0000-0xFFFF	-
P07.51	Output terminal state at last fault	0x0000	0x0000-0xFFFF	-
P07.55	Running frequency at 2nd-last fault	0.00Hz	0.00-600.00Hz	-
P07.56	Ramp reference frequency at 2nd-last fault	0.00Hz	0.00-600.00Hz	-
P07.57	Output voltage at 2nd-last fault	0V	0–1200V	-
P07.58	Output current at 2nd-last fault	0.00A	0.00-630.00A	-
P07.59	Bus voltage at 2nd-last fault	0.0V	0.0-2000.0V	-
P07.60	Temperature at 2nd-last fault	0.0°C	-20.0–120.0°C	-
P07.61	Input terminal state at 2nd-last fault	0x0000	0x0000-0xFFFF	-
P07.62	Output terminal state at 2nd-last fault	0x0000	0x0000-0xFFFF	-
P07.75	Local accumulative running time	0h	0–65535h	-

Functio n	Name	Default	Setting range	Description
P07.76	VFD electricity consumption high bit	0kkWh		Used to display the electricity consumption of the VFD.
P07.77	VFD electricity consumption low bit	0kWh	0.0–999.9kWh	VFD electricity consumption = P07.76*1000+P07.77

6.11.2 GroupP17—Basic status

6.11.2.1 Basic status

Functio n	Name	Default	Setting range	Description
P17.42	tor control mode	0x000	0x000-0x122	Ones place: Control mode 0: Vector 0 1: Vector 1 2: V/F control Tens place: Control status 0: Speed control 1: Torque control 2: Reserved Hundreds place: Motor number 0: Motor 1 1: Motor 2
P17.65	itus word 3	0x0000	0x0000-0xffff	Bit 0: Running protection flag Bit 1: Running Bit 2: Running direction (1=REV, 0=FWD) Bit 3: Jogging Bit 4: Alarming Bit 5: In fault Bit 6: Running paused Bit 7: In sleep Bit 8: In PoFF state Bit 9: Undervoltage due to transient power loss Bit 10: Overvoltage stall Bit 11: Pre-exciting

Functio n	Name	Default	Setting range			De	scri	otion	
				E	3it 12: I	DC bra	king		
				E	3it 13: I	dentify	ying _l	parametei	'S
				E	3it 14:	Flux v	veak	ening	
				(reserv	ed)			
				E	Bit 15:	Reserv	ed		
				[Display	s the	pres	ent digita	al
		0x000	0x000-0x7FF	i	nput te	ermina	l stat	e of the V	FD.
D47.40	Digital input				Bit0	Bit1	Bit2	Bit3	Bit4
P17.12	terminal state.				DI1	DI2	DI3	DI4	DI5
					Bit5	Bit6	Bit7	Bit8-bit9	Bit10
					DI6	DI7	DI8	Reserved	HDI1
				[Display	s the	pres	ent digit	al
P17.13	District surfaces			c	output	termin	al sta	ate of the	VFD.
	Digital output	0x00	0x00-0x1F	E	Bit O-B	it 2: R	eser	ved	
	terminal state			E	3it 3: H	DO1			
				E	3it 4: R	O1			

6.11.2.2 Frequency related

Functio n	Name	Default	Setting range	Description
P17.00	Set frequency	0.00Hz	0.00Hz-P00.03	Displays the present set frequency of the VFD.
P17.01	Output frequency	0.00Hz	0.00Hz-P00.03	Displays the present output frequency of the VFD.
P17.02	Ramp reference frequency	0.00Hz	0.00Hz-P00.03	Displays the present ramp reference frequency of the VFD.
P17.05	Motor rotation speed	0Rpm	0–65535Rpm	Displays the present motor rotation speed.
P17.10	Estimated motor frequency	0.00Hz	0.00-600.00Hz	Displays the estimated motor rotor frequency under the open-loop vector condition.
P17.14	Digital adjustment value	0.00Hz	0.00-600.00Hz	Displays the adjustment on the VFD through the UP/DOWN terminal.
P17.16	Linear speed	0	0-65535	Displays the linear speed.
P17.23	HDI1 input frequency	0.000kHz	0.000-50.000 kHz	Displays HDIA input frequency.

Functio n	Name	Default	Setting range	Description
P17.45	Forward rotation upper-limit frequency in torque control	0.00Hz	0.00–600.00Hz	Displays the forward rotation upper-limit frequency in torque control.
P17.46	Reverse rotation upper-limit frequency in torque control	0.00Hz	0.00-600.00Hz	Displays the reverse rotation upper-limit frequency in torque control.
P17.51	Frequency set by A source	0.00Hz	0.00-600.00Hz	Displays the frequency set by A source.
P17.52	Frequency set by B source	0.00Hz	0.00-600.00Hz	Displays the frequency set by B source.
P17.59	Actual carrier frequency	0.000kHz	0.000–15.000 kHz	Displays the actual carrier frequency.

6.11.2.3 Voltage related

Functio n	Name	Default	Setting range	Description
P17.03	Output voltage	0V	0–1200V	Displays the present output voltage of the VFD.
P17.11	DC bus voltage	0.0V	0.0-2000.0V	Displays the present DC bus voltage of the VFD.
P17.19	Al1 input voltage	0.00V	0.00-10.00V	Displays the AI1 input signal.
P17.20	AI2 input voltage	0.00V	0.00V-10.00V	Displays the AI2 input signal.
P17.21	Al3 input voltage	0.00V	0.00V-10.00V	Displays the AI3 input signal.

6.11.2.4 Current related

Functio n	Name	Default	Setting range	Description
P17.04	Output current	0.00A	0.00-500.00A	Displays the present output current valid value of the VFD.
P17.06	Torque current	0.00A	-300.00–300.00A	Displays the present torque current of the VFD.

Functio n	Name	Default	Setting range	Description
P17.07	Exciting current	0.00A	-300.00–300.00A	Displays the present exciting current of the VFD.
P17.35	Exciting current reference	0.00A	-300.00–300.00A	Displays the exciting current reference value under the vector control mode.
P17.36	Torque current reference	0.00A	-300.00–300.00A	Displays the torque current reference value under the vector control mode.

6.11.2.5 Torque and power related

Functio n	Name	Default	Settingrange	Description
P17.08	Motor power	0.0%	-300.0%-300.0%	Displays the present motor power; 100% is relative to the rated motor power. A positive value indicates it is the motoring state while a negative value indicates it is in the generating state.
P17.09	otor output torque	0.0%	-250.0%–250.0%	Displays the present output torque of the VFD; 100% is relative to the motor rated torque. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state.
P17.15	Torque reference value	0.0%	-300.0%-300.0%	Relative to the percentage of the rated torque of the present motor, displaying the torque reference.
P17.27	Motor power factor	1.00	-1.00–1.00	Displays the power factor of the current motor.

Functio n	Name	Default	Settingrange	Description
P17.38	Output torque	0.0N · m	-3000.0–3000.0 N·m	Displays the output torque value. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state.
P17.43	Electromotive torque upper limit	0.0%	0.0%–300.0% (of the motor rated current)	Displays the electromotive torque upper limit.
P17.44	Braking torque upper limit	0.0%	0.0%–300.0% (of the motor rated current)	Displays the braking torque upper limit.
P17.47	Inertia compensation torque	0.0%	-100.0%—100.0%	Displays the inertia compensation torque.
P17.48	Friction compensation torque	0.0%	-100.0%–100.0%	Displays the friction compensation torque.

6.11.2.6 PID regulator

Functio n	Name	Default	Settingrange	Description
P17.25	PID reference value	0.0%	-100.0%—100.0%	Displays the PID reference value.
P17.26	PID feedback value	0.0%	-100.0%—100.0%	Displays the PID feedback value.
P17.53	PID proportional output	0.00%	-100.0%–100.0%	Displays the PID proportional output.
P17.54	PID integral output	0.00%	-100.0%—100.0%	Displays the PID integral output.
P17.55	PID differential output	0.00%	-100.0%—100.0%	Displays the PID differential output.

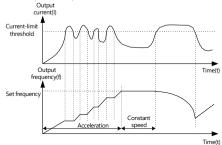

Functio n	Name	Default	Settingrange	Description
P17.56	PID present proportional gain	0.00%	0.00-100.00%	Displays the PID present proportional gain.
P17.57	PID present integral time	0.00s	0.00-10.00s	Displays the PID present integral time.
P17.58	PID present differential time	0.00s	0.00-10.00s	Displays the PID present differential time.
P17.40	Process PID output	0.00%	-100.0%—100.0%	Displays the process PID output.

6.12 Protection parameter setting

6.12.1 Overvoltage stall protection

When the motor is in power generation state (the motor speed is greater than the output frequency), the VFD bus voltage will increase continuously. When the detected bus voltage exceeds the value of P11.04 (Overvoltage stalling protection voltage), the overvoltage stalling protection function adjusts the output frequency based on the VFD ACC/DEC status (to be specific, if the VFD is in the ACC or constant speed state, the VFD will increase the output frequency; if the VFD is in the DEC state, the VFD will increase the DEC time). In this way, the regenerative energy on the bus can be consumed, preventing against VFD overvoltage. If the function does not meet requirements in the actual application, you can adjust parameters related to the current loop and voltage loop.

Figure 6-1 Actions taken for protection against overvoltage stall

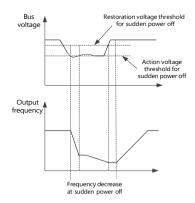

Functio n	Name	Default	Setting range	Description
P11.03	Overvoltage stall protection	1	0–1	0: Disable 1: Enable
P11.04	Overvoltage stall	136%	120%–150% (of the standard bus voltage)	For 380V models, it is 136% by default.
P11.04	protection Voltage	120%	120%–150% (of the standard bus voltage)	For 220V models, it is 120% by default.
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	60	0–127	Specifies the proportional coefficient of the bus voltage regulator during overvoltage stalling.
P11.22	Integral coefficient of voltage regulator during overvoltage stall	5	0–1000	Specifies the integral coefficient of the bus voltage regulator during overvoltage stalling.
P11.23	Proportional coefficient of current regulator during overvoltage stall	60	0–1000	Specifies the proportional coefficient of the active current regulator during overvoltage stalling.
P11.24	Integral coefficient of current regulator during overvoltage stall	250	0–2000	Specifies the integral coefficient of the active current regulator during overvoltage stalling.

6.12.2 Current-limit protection

During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency, if no measures are taken, the VFD may trip due to overcurrent during acceleration.

Current-limit protection function detects output current during running, and compares it with the current-limit level defined by P11.06, if it exceeds the current-limit level, the VFD will run at stable frequency during accelerated running, or run in decreased frequency

during constant-speed running; if it exceeds the current-limit level continuously, the VFD output frequency will drop continuously until reaching lower limit frequency. When the output current is detected to be lower than the current-limit level again, it will continue accelerated running. In some heavy load scenarios, you can increase the value of P11.06 to improve the VFD output torque.



Functio n	Name	Default	Setting range	Description
P11.05	urrent limit selection	0x01	0x00-0x11	Ones place: Current limit action selection 0: Invalid 1: Always valid Tens: Hardware current limit overload alarm selection 0: Valid 1: Invalid
P11.06	Automatic current limit threshold	160.0%	50.0%-200.0%	120.0% by default in light load mode; 160.0% by default in heavy load mode. Percentage of the VFD rated output current.
P11.07	Frequency decrease ratio in current limiting	10.00Hz/s	0.00-50.00Hz/s	-

6.12.3 Frequency decrease at sudden power failure

This function enables the system to keep running at sudden short-period power failure. When power failure occurs, the motor is in the power generation state, the bus voltage is kept at the action determination voltage for frequency decrease at sudden power failure, preventing the VFD from stop due to undervoltage.

If this function does not meet actual requirements, you can set parameters P11.17–P11.20. The speed loop dynamic response characteristics of vector control can be adjusted by setting the proportional coefficient and integral coefficient of speed regulator. Increasing proportional gain or reducing integral time can accelerate dynamic response of speed loop; however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; If proportional gain is too small, stable oscillation or speed offset may occur.

Functio n	Name	Default	Setting range	Description
P11.01	Frequency drop at transient power-off	0	0–1	0: Disable 1: Enable
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	20	0–127	Specifies the integral coefficient of the bus voltage regulator during undervoltage stalling.
P11.18	Integral coefficient of voltage regulator during undervoltage stall	5	0–1000	Specifies the integral coefficient of the bus voltage regulator during undervoltage stalling.

Functio n	Name	Default	Setting range	Description
P11.19	Proportional coefficient of current regulator during undervoltage stall	20	0–1000	Specifies the proportional coefficient of the active current regulator during undervoltage stalling.
P11.20	Integral coefficient of current regulator during undervoltage stall	20	0–2000	Specifies the integral coefficient of the active current regulator during undervoltage stalling.

6.12.4 Cooling fan control

The fan control mode is specified by P08.41, which allows you to select different running modes and speed regulation modes.

Functio n	Name	Default	Setting range	Description
P08.41	Cooling-fan running mode	0x10	0x00-0x12	Ones place: Run mode 0: Normal mode 1: Permanent running after power-on 2: Run mode 2 Tens place: Speed regulation mode 0: Disable speed regulation 1: Speed regulation mode 1

✓Note:

- The fan automatically runs in any mode if the VFD detects that the inverter module temperature is higher than 50°C.
- In addition to the normal running requirements, run mode 2 has the feature that the fan still runs even when the ramp frequency is greater than 0.

Running mode selection

Normal running mode: P08.41 ones place=0

The cooling fan runs when the VFD runs. The cooling fan stops 30s after the VFD stops.

Permanent running after power-on: P08.41 ones place=1

The cooling fan runs continuously as long as the VFD is powered on.

Running mode 2: P08.41 ones place=2

The cooling fan runs only when the VFD runs and the ramp frequency is greater than 0. The cooling fan stops 30s after the VFD stops.

Speed regulation mode

Full speed mode: P08.41 tens place=0

The fan cannot be speed regulated and runs at full speed.

Speed regulation mode: P08.41 tens place=1

The fan speed is regulated based on the inverter module temperature; as the temperature increases, the fan speed also increases.

6.12.5 Dynamic braking

When the VFD driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the VFD, causing the bus voltage of the VFD to rise. If the bus voltage exceeds a specific value, the VFD reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

You can set the following parameters for the VFD with a built-in dynamic braking unit:

When P08.39=1 and P11.02=1, and the bus voltage exceeds the dynamic braking voltage threshold, the braking pipe is opened regardless of whether the VFD is running or stopped. If the bus voltage is less than dynamic braking voltage threshold minus 10V, the braking pipe is closed.

When P08.39=1 and P11.02=0, and the bus voltage exceeds the dynamic braking voltage threshold, the braking pipe is opened only when the VFD is running. If the bus voltage is less than dynamic braking voltage threshold minus 10V, the braking pipe is closed.

Functio n	Name	Default	Setting range	Description
P08.39	Enabling dynamic braking	0	0–1	0: Disable 1: Enable
P08.40	Dynamic braking threshold voltage	For 220V: 380.0V For 380V: 700.0V	200.0-2000.0V	Specifies the starting bus voltage of dynamic braking. Adjust this value properly to achieve effective braking for the load. The default value varies depending on the voltage class.

Functio n	Name	Default	Setting range	Description
P11.02	Enabling dynamic braking in standby mode	0	0–1	0: Disable 1: Enable

6.12.6 Safe torque off

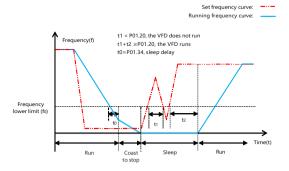
You can enable the safe torque off (STO) function to prevent unexpected startups when the VFD main power supply is not switched off. The STO function switches off the VFD output by turning off the drive signals to prevent unexpected startups of the motor. For details, see Appendix F STO function.

Functio n	Name	Default	Setting range	Description
P08.55	STO lock selection	0	0–1	0: Lock upon STO alarm Lock upon STO alarm: indicates resetting is required after state restoration if STO occurs. 1: No lock upon STO alarm No lock upon STO alarm: Indicates that the STO alarm will automatically clear after state recovery from STO.

6.13 Typical applications

6.13.1 Counting

When photoelectric switch pulse signals need to be collected, you can use multifunction digital input terminals to collect signals. That is, set P05.01–P05.04 or P05.11 to 31 (to trigger the counter). To use the HDI counting function, set P05.00 to 1 first.

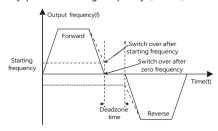

When P17.18 (Accumulative value) reaches P08.25 (Set counting value), counting restarts. Once the value of P17.18 equals that of P08.25, set the digital output function to 18 to output the ON signal. Similarly, once the value of P17.18 equals that of P08.26, set the digital output function to 19 to output the ON signal.

Functio n	Name	Default	Setting range	Description
P05.00	HDI input type	0	10–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input

Functio n	Name	Default	Setting range	Description
P05.01	Function of DI1	1		28: Reset the counter, that is, the
P05.02	Function of DI2	4		counting value is cleared
P05.03	Function of DI3	7	0–95	31: Trigger the counter, that is,
P05.04	Function of DI4	0		the counting value is
P05.11	Function of HDI1	0		accumulated
P06.04	HDO1 output	0		0: Invalid
P06.05	RO1 output	1	0–63	18: Set counting value reached19: Specified counting value reached
P08.25	Set counting value	0	P08.26–65535	-
P08.26	Designated counting value	0	0-P08.25	-
P17.18	Accumulative counting value	0	0–65535	-

6.13.2 Sleep and wakeup

According to energy saving requirements, the sleep function can be used in water supply scenarios. When the motor needs to run effectively, you can adjust the set frequency to wake up it. The timing diagram is as follows.



When the set frequency is lower than the frequency lower limit, and the ones place of P01.19 is set to sleep, the VFD stops according to the tens place of P01.19 and sleeps once running at the lower limit for the time specified by P01.34. If the set frequency is higher than the lower limit once again and it lasts for the time specified by P01.20, the VFD restores to the running state automatically and increases to the set frequency.

Functio n	Name	Default	Setting range	Description
P01.19	Action selected when running frequency less than frequency lower limit	0	0x00-0x12	The function code determines the running state of the VFD when the set frequency is lower than the lower-limit one. Ones place: Action selection 0: Run at the frequency lower limit 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop
P01.20	Wake-up-from- sleep delay	0.0s	0.0-3600.0s	Valid only when P01.19ones place is 2.
P01.34	Sleep delay	0.0s	0-3600.0s	-

6.13.3 Switchover between FWD run and REV run

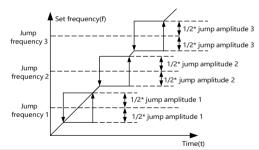
In scenarios with the needs of frequent switchover between FWD run and REV run, you can set P01.14 to increase the torque and stability in the process to decrease the current impact. When P01.14 = 0, the switching frequency point is zero (P01.15). When P01.14 = 1, the switching frequency point is starting frequency (P01.01). Refer to the following figure.

Functio n	Name	Default	Settingrange	Description
P01.14	FWD/REV run switching mode	1	0–2	0: Switch at zero frequency 1: Switch at the starting frequency 2: Switch after the speed reaches the stop speed with a delay

Switch at the zero or starting frequency: P01.14=0 or 1

When P01.14=0 or 1, and the switchover between FWD run and REV run is valid, the VFD decelerates to the switching frequency point. If P01.16=1, check whether the motor output frequency is less than the switching frequency point. If yes, wait the time specified by P01.13, and then control the motor to run in the reverse direction. If no, wait the time specified by P01.17 and then the time specified by P01.13, and then control the motor to run in the reverse direction.

Switch after the speed reaches the stop speed with a delay: P01.14=2

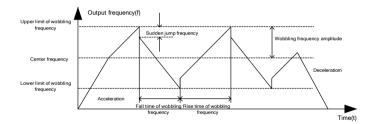

When P01.14=2, the DEC process for the switchover between FWD run and REV run is similar to the process of deceleration to stop. In the DEC process for the switchover, you can set related parameters to determine whether to enable DC braking for stop and based on the work conditions. The difference between the two processes is as follows: When the running frequency reaches the stop speed specified by P01.15 or DC braking ends, the deadzone time specified by P01.13 needs to be waited, and then the motor can be controlled to run in the reverse direction.

Functio n	Name	Default	Setting range	Description
P01.01	Starting frequency of direct start	0.50Hz	0.00Hz-P00.03	The function code indicates the initial frequency during VFD start.
P01.02	Starting frequency hold time	0.0s	0.0–50.0s	Setting a proper starting frequency can increase the torque during VFD start. During the hold time of the starting frequency, the output frequency of the VFD is the starting frequency. And then, the VFD runs from the starting frequency to the set frequency. If the set frequency is lower than the starting frequency, the VFD stops running and keeps in the standby state. The starting frequency is not limited in the lower limit frequency.

Functio n	Name	Default	Setting range	Description
				Output frequency f fmax Time t f1 is specified by P01.01 t1 t1 is specified by P01.02
P01.13	FWD/REV run deadzone time	0.0s	0.0-3600.0s	Specifies the transition time of the FWD/REV run switching, the mode of which is specified by P01.14.
P01.15	Stop speed	0.50Hz	0.00Hz-P00.03	-
P01.16	Stop speed detection mode	0	0-1	O: Detect by the set speed (unique in space voltage vector control mode) 1: Detect according to speed feedback
P01.17	Stop speed detection time	0.50s	0.00-100.00s	-

6.13.4 Jump frequency

The VFD can avoid mechanical resonance points by setting jump frequencies. The VFD has three jump frequency parameters P08.11, P08.13, and P08.15. If all jump frequencies are set to 0, this function is invalid. When the set frequency is within the jump frequency range (Jump frequency \pm 1/2 * Jump amplitude), if the VFD is in the ACC phase, the VFD runs at the lower bound (Jump frequency - 1/2 * Jump amplitude); if the VFD is in the DEC phase, the VFD runs at the upper bound (Jump frequency + 1/2 * Jump amplitude). See the following figure.



Functio n	Name	Default	Setting range	Description
P08.11	Jump frequency 1	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency.
P08.12	Jump amplitude 1	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency. See P08.11 to set it.
P08.13	Jump frequency 2	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency.
P08.14	Jump amplitude 2	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency. See P08.13 to set it.
P08.15	Jump frequency 3	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency.
P08.16	Jump amplitude 3	0.00Hz	0.00Hz-P00.03	P00.03 specifies the max. output frequency. See P08.15 to set it.

6.13.5 Wobbling frequency

Wobbling frequency is mainly applied in the scenarios where transverse movement and winding functions are needed such as textile and chemical fiber industries. The wobbling frequency function indicates that the VFD output frequency wobbles up or down with the set frequency as the center, and the output frequency with the wobbling frequency is impacted by the frequency upper and lower limits.

The time axis tracking is as shown in the following figure.

Wobbling frequency = Central frequency (Set frequency) x P08.17 (Amplitude of wobbling frequency)

Sudden jump frequency = Wobbling frequency x P08.18 (Amplitude of sudden jump frequency)

Functio n	Name	Default	Setting range	Description
P08.17	Amplitude of wobbling	0.0%	0.0–100.0%	Relative to the set frequency
P08.18	frequency Amplitude of sudden jump frequency	0.0%	0.0–50.0%	Relative to the wobbling frequency
P08.19	Rise time of wobbling frequency	5.0s	0.1–3600.0s	Time taken to run from the lowest point of wobbling frequency to the highest point.
P08.20	Fall time of wobbling frequency	5.0s	0.1–3600.0s	Time taken to run from the highest point of wobbling frequency to the lowest point.
P05.00	HDI input type	0	0–1	0: HDI1 is high-speed pulse input 1: HDI1 is digital input
P05.01	Function of DI1	1	-0-95	0: No function
P05.02	Function of DI2	4		26: Pause wobbling frequency
P05.03	Function of DI3	7		(stopped at the present
P05.04	Function of DI4	0		frequency)
P05.11	Function of HDI1	0		27: Reset wobbling frequency (returned to the center frequency)

7 Communication

7 1 Standard communication interface

The VFD provides RS485 and USB communication as standard configuration. The following table lists the communication terminal functions.

Interface type	Network signal	Signal description	Description
IO terminal	485+ 485-	RS485 communication	Terminal for external RS485 communication, supporting the Modbus communication protocol
USB Type-C terminal	USB	Internally converted serial communication	External USB Type-C communication terminal , supporting the Modbus communication protocol.

Table 7-1 Standard communication terminal

✓ Note: Both RS485 communication and the internally converted USB-serial communication support the Modbus protocol. However, they belong to two separate bus networks and can be connected to the master simultaneously. If both masters send commands such as start/stop or frequency reference to the VFD, the VFD responds in the order the commands are received. Additionally, both communication methods share the same communication parameters such as slave address, baud rate, and data bit verification format. However, the USB-converted serial communication does not support timeout fault detection. The USB driver can be downloaded from the ASTOR official website or installed via the Workshop software.

7.2 Communication data address

The communication data includes VFD-related function parameter data, VFD status parameter data, and VFD control parameter data.

7.2.1 Function parameter address

The address of a function code consists of two bytes, with the MSB on the left and LSB on the right. Both the MSB and LSB also range from 00–FFH. The MSB is the hexadecimal form of the group number on the left of the dot mark, and LSB is that of the number on the right of the dot mark. Take P05.06 as an example: The group number is 05, that is, the MSB of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the LSB is the hexadecimal form of 05. Therefore, the function code address is 0506H in the hexadecimal form. For P10.01, the parameter address is

0A01H

✓Note:

- The parameters in the P99 group are set by the manufacturer and cannot be read
 or modified. Some parameters cannot be modified when the VFD is running; some
 cannot be modified regardless of the VFD status. Pay attention to the setting range,
 unit, and description of a parameter when modifying it.
- Frequently writing to EEPROM will reduce its life time. Some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the highest-order bit of the corresponding function code address from 0 to 1. For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the value in the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

7.2.2 Non-function parameter address

In addition to modifying the parameters of the VFD, the master can also control the VFD, such as starting and stopping it, and monitoring the operation status of the VFD. The following describes status parameter data addresses and control parameter data addresses

1. Status parameters

Note: Status parameters are read only.

Parameter	Address	Description
		0001H: Forward running
		0002H: Running reversely
\\(\(\) \\ \\ \ \ \ \ \ \ \ \ \ \ \ \		0003H: Stopped
VFD status word 1	2100H	0004H: Faulty
		0005H: In POFF state
		0006H: In pre-exciting state
		Bit0: =0: Not ready to run =1: Ready to run
		Bit2-Bit1: =00: Motor 1 =01: Motor 2
		Bit3: =0: AM =1: SM
		Bit4: =0: No overload alarm =1: Overload alarm
VFD status word 2	2101H	Bit6-Bit5: =00: Keypad-based control
		=01: Terminal-based control
		=10: Communication-based control
		Bit 7: Reserved
		Bit8: =0: Speed control =1: Torque control

Parameter	Address	Description
		Bit 9: Reserved
		Bit11-Bit10: =00: Vector 0 =01: Vector 1
		= 10: Space voltage vector
VFD fault code	2102H	See the description of fault types.
VFD identification code	2103H	0x1202(DRV-240)
Running frequency	3000H	0-Fmax (Unit: 0.01Hz)
Set frequency	3001H	0-Fmax (Unit: 0.01Hz)
Bus voltage	3002H	0.0–2000.0V (Unit: 0.1V)
Output voltage	3003H	0–1200V (Unit: 1V)
Output current	3004H	0.00–300.0A (Unit: 0.01A)
Rotation speed of running	3005H	0–65535 (Unit: 1 RPM)
Output power	3006H	-300.0%–300.0% (Unit: 0.1%)
Output torque	3007H	-250.0%–250.0% (Unit: 0.1%)
PID setting	3008H	-100.0%–100.0% (Unit: 0.1%)
PID feedback	3009H	-100.0%–100.0% (Unit: 0.1%)
		0x000-0x7FF
Input IO state	300AH	Corresponding to the local terminals:
		HDI1/Reserved/Reserved/DI8/DI7/DI6/DI5/DI4/DI3/DI2/DI1
		0x00-0x1F
Output IO state	300BH	Corresponding to the local terminals
		RO1/HDO1/Reserved/Reserved
Analog input 1	300CH	0.00-10.00V (Unit: 0.01V)
Analog input 2	300DH	0.00-10.00V (Unit: 0.01V)
Analog input 3	300EH	0.00-10.00V (Unit: 0.01V)
Read HDI1		
high-speed pulse	3010H	0.00–50.00kHz (Unit: 0.01Hz)
Input		
Present step of simple PLC	3012H	0–15
External counting value	3014H	0–65535
Torque setting	3015H	-300.0%-300.0% (Unit: 0.1%)
VFD identification code	3016H	-
Fault code	5000H	-

2. Control parameter

△Note: VFD control parameters can be read and written.

Parameter	Address	Description
		0001H: Forward running
		0002H: Reverse running
		0003H: Forward jogging
Communication-		0004: Reverse jogging
based control	2000H	0005H: Stop
command		0006H: Coast to stop
		0007H: Fault reset
		0008H: Jogging stop
		0009H: Emergency stop
	200111	Communication-based frequency setting (0–Fmax, unit:
	2001H	0.01Hz)
	2002H	PID reference (0–1000, in which 1000 corresponds to 100.0%)
	2003H	PID feedback (0–1000, in which 1000 corresponds to 100.0%)
	200411	Torque setting (-3000–3000, in which 1000 corresponds to
	2004H	100.0% of the motor rated current)
	200511	Upper limit setting of forward running frequency (0–Fmax;
	2005H	unit: 0.01Hz)
	2006H	Upper limit setting of reverse running frequency (0-Fmax;
		unit: 0.01Hz)
	2007H	Electromotive torque upper limit (0–3000, in which 1000
Communication-	200711	corresponds to 100.0% of the motor rated current)
based setting	2008H	Braking torque upper limit (0–3000, in which 1000
address	200011	corresponds to 100.0% of the motor rated current)
uddiess		Special control command word: Bit1–
	2009Н	bit0=00: Motor 1 =01: Motor 2
		Bit2: =1: Enable speed/torque control switchover
		=0: Disable speed/torque control switchover
		Bit3: =1: Clear electricity consumption data
		=0: Keep electricity consumption data
		Bit4: =1 Enable pre-excitation =0: Disable pre-excitation
		Bit5: =1: Enable DC braking
		=0: Disable DC braking
		Virtual input terminal command. Range: 0x000–0x7FF
	200AH	Corresponding to the local terminals:
		HDI1/Reserved/Reserved/DI8/DI7/DI6/DI5/DI4/DI3/DI2/DI1

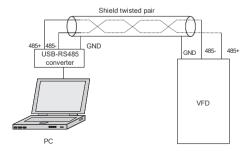
Parameter	Address	Description
		Virtual output terminal command (0x00–0x1F)
	200BH	Corresponding to the local terminals
		RO1/HDO1/Reserved/Reserved
	200CH	Voltage setting (used for V/F separation) (0–1000, in which 1000 corresponds to 100.0% of the motor
		rated voltage)
	200DH	AO setting 1 (-1000-+1000, in which 1000 corresponding to 100.0%)
	200EH	AO setting 2 (-1000-+1000, in which 1000 corresponding to 100.0%)

Note: Some parameters in the preceding table are valid only after they are enabled. For example, for the running or stop operation, you must set "Channel of running commands" (P00.01) to "Communication", and set "Communication channel of running commands" (P00.02) to "Modbus".

The following table describes the encoding rules of device codes (corresponding to the identification code 1200 H of the VFD).

8 MSBs	Meaning	8 LSBs	Meaning
	Generall		
0x12	mechanical	0x02	Goodrive28 series VFD
	type		

7.3 Modbus networking


A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with any single slave or with all slaves. For separate access commands, a slave needs to return a response. For broadcast information, slaves do not need to return responses.

Generally, the PC, industry control device, or programmable logic controller (PLC) functions as the master, while VFDs function as slaves.

7.3.1 Network

7.3.1.1 Application to one VFD

Figure 7-1 Application to one VFD

7.3.1.2 Application to multiple VFDs

In practical application to multiple VFDs, the daisy chain connection and star connection are commonly used.

Figure 7-2 Practical daisy chain connection application

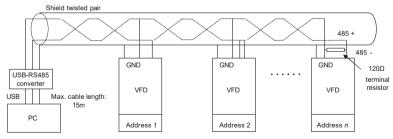
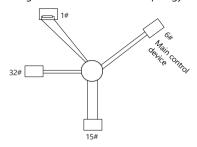
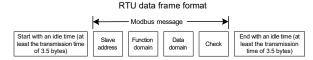



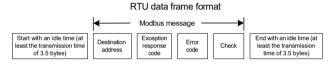
Figure 7-3 Star connection topology

∠Note•


- When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in the figure, the two devices are #1 device, and #15 device).
- Use shielded cables, if possible, in multi-device connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be duplicated.

7.3.2 RTU mode

7.3.2.1 RTU communication frame structure


When a controller is set to use the RTU communication mode on a Modbus network, every byte (including eight bits) in the message includes two hexadecimal characters (each includes four bits). Compared with the ASCII mode, the RTU mode achieves transmission of more data at the same band rate

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

If the slave detects a communication fault or read/write failure due to another cause, an error frame is replied.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)	
	Communication address: 0-247 (decimal system; 0 is the	
ADDR (slave address domain)	broadcast address)	
CMD (function domain)	03H: Read slave parameter; 06H: Write slave parameter	
Data domain DATA (N-1)DATA(0)	Data of 2*N bytes Main content of the communication as well as the core of data exchanging	
CRC CHK LSB	Detection and as CDC (1Chita)	
CRC CHK MSB	Detection value: CRC (16 bits)	
END (frame end)	T1-T2-T3-T4 (transmission time of 3.5 bytes)	

7.3.2.2 RTU communication frame error check methods

During the transmission of data, errors may occur due to various factors. Without error check, the data receiving device cannot identify data errors and may make an incorrect response. The incorrect response may cause severe problems. Therefore, the data must be checked

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

7.3.2.3 Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be sent are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated

and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

7.3.2.4 Cyclic redundancy check (CRC)

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, stop, and parity bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following example is a simple CRC calculation function for your reference (using the C programming language):

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the

calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation requirements on programs.

7.3.3 RTU command code

7.3.3.1 Command code 03H, reading N words (continuously up to 16 words)

The command code 03H is used by the master to read data from the VFD. The count of data to be read depends on the "data count" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by "H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and running status of the VFD

For example, if the master reads two contiguous pieces of data (that is, to read content from the data addresses 0004 H and 0005 H) from the VFD whose address is 01H, the command frame structure is described in the following.

RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR (address)	01H
CMD (command code)	03H
Start address MSB	00H
Start address LSB	04H
Data count MSB	00H
Data count LSB	02H
CRC LSB	85H
CRC MSB	САН
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

"T1-T2-T3-T4 (transmission time of 3.5 bytes)" in "START" and "END" indicates that the RS485 communication needs to be idle for at least the transmission time of 3.5 bytes. An idle time is required to distinguish on message from another to ensure that the two messages are not regarded as one.

"ADDR" is "01H", indicating that the command is sent to the VFD whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the command is used to read data from the VFD. "CMD" occupies one byte.

"Start address" indicates the address from which data is read. "Start address" occupies

two bytes, with the MSB on the left and LSB on the right.

"Data count" indicates the count of data to be read (unit: word). "Start address" is "0004H" and "Data count" is "0002H", which indicates reading data from the addresses 0004H and 0005H

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	03H
Number of bytes	04H
Address 0004H data MSB	13H
Address 0004H data LSB	88H
Address 0005H data MSB	00H
Address 0005H data LSB	00H
CRC LSB	7EH
CRC MSB	9DH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The definition of the response information is described as follows:

"ADDR" is "01H", indicating that the command is sent from the VFD whose address is 01H. "ADDR" occupies one byte.

"CMD" is "03H", indicating that the message is a VFD response to the 03H command from the master for reading data. "CMD" occupies one byte.

"Number of bytes" indicates the number of bytes between the byte (not included) and the CRC byte (not included). The value "04" indicates that there are four bytes of data between "Number of bytes" and "CRC LSB", that is, "Address 0004H data MSB", "Address 0004H data LSB". "Address 0005H data LSB".

A record of data contains two bytes, with the MSB on the left and LSB on the right. From the response, the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

7.3.3.2 Command code 06H, writing a word

This command is used by the master to write data to the VFD. One command can be used to write only one piece of data. It is used to modify the parameters and running mode of the VFD.

For example, if the master writes 5000 (1388H) to 0004H of the VFD whose address is 02H, RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
SIAIU	11 12 13 14 (transmission time of 5.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
Data content MSB	13H
Data content LSB	88H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
Data content MSB	13H
Data content LSB	88H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.3.3 Command code 08H,

diagnosis

Sub-function code	Description
0000	Return data based on query information.

For example, for the query about the circuit detection information about the VFD whose address is 01H, the query and response strings are the same.

RTU master command:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	08H
Sub-function code MSB	00H
Sub-function code LSB	00H
Data content MSB	12H
Data content LSB	ABH

CRC CHK LSB	ADH
CRC CHK MSB	14H
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	08H
Sub-function code MSB	00H
Sub-function code LSB	00H
Data content MSB	12H
Data content LSB	ABH
CRC CHK LSB	ADH
CRC CHK MSB	14H
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.3.4 Command code 10H, continuous writing

The command code 10H is used by the master to write data to the VFD. The quantity of data to be written is determined by data count, and a maximum of 16 pieces of data can be written.

For example: Write 5000 (1388H) and 50 (0032H) to 0004H and 0005H of the VFD (as the slave) whose address is 02H.

RTU master command (from the master to the VFD) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
Data count MSB	00H
Data count LSB	02H
Number of bytes	04H
MSB of data 0004H content	13H
LSB of data 0004H content	88H
MSB of data 0005H content	00H
LSB of data 0005H content	32H
CRC LSB	C5H
CRC MSB	6EH

End	T1-T2-T3-T4 (transmission time of 3.5 bytes)
	(

RTU slave response (from the VFD to the master) is as follows:

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
Data count MSB	00H
Data count LSB	02H
CRC LSB	C5H
CRC MSB	6EH
End	T1-T2-T3-T4 (transmission time of 3.5 bytes)

7.3.4 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. You can multiply a non-integer by a multiple to obtain an integer, in which the multiple is considered as a fieldbus scale.

The fieldbus scale depends on the number of decimal places in the value specified in "Setting range" or "Default". If there are n (for example, 1) decimal places in the value, the fieldbus scale m (then m=10) is the result of 10 to the power of n. For example:

Functio n	Name	Parameter description	Setting range	Default
P01.20	Wake-up-from-sleep 0.0–3600.0s (Valid only when 0.00–3600.0		0.0s	
delay		P01.19 ones place=2)	0.00-3600.0	0.05

The value specified in "Setting range" or "Default" contains one decimal place, and therefore the fieldbus scale is 10. If the value received by the master is 50, "Wake-up-from-sleep delay" of the VFD is 5.0 (5.0=50/10).

To set "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then send the following write command:

01	<u>06</u>	<u>01 14</u>	<u>00 32</u>	<u>49 E7</u>
VFD	Write	Parameter	Parameter	CRC
address	command	address	data	

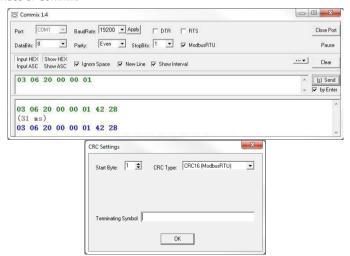
After receiving the command, the VFD converts 50 into 5.0 based on the fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after sending the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the VFD:

01 VFD Read 2-byte Parameter data data

The parameter data is 0032H, that is, 50, and therefore 5.0 is obtained based on the fieldbus scale (50/10=5.0). Then, the master confirms that the wake-up-from-sleep delay is 5.0s.

7.3.5 Error message response


Error message responses are sent from the VFD to the master. The following table lists the codes and definitions of the error message responses.

Code	Name	Meaning		
		The command code received by the upper computer is not		
	Invalid	allowed to be executed. The possible causes are as follows:		
01H	command	The function code is applicable only on new devices and is		
	Command	not implemented on this device.		
		The slave is in faulty state when processing this request.		
		For the VFD, the data address in the request of the upper		
02H	ıvalid data	computer is not allowed. In particular, the combination of the		
0211	address	register address and the number of the to-be-sent bytes is		
		invalid.		
		The received data domain contains a value that is not allowed.		
		The value indicates the error of the remaining structure in the		
03H	ralid data	combined request.		
USFI	value	△Note: It does not mean that the data item submitted for		
		storage in the register includes a value unexpected by the		
		program.		
04H	Operation failure	The parameter setting is invalid in the write operation. For		
U4H	Operation failure	example, a function input terminal cannot be set repeatedly.		
05H	Incorrect	The password entered in the password verification address is		
USH	password	different from that is specified by P07.00.		
		The data frame sent from the host controller is incorrect in the		
0611	orrect data	length, or in the RTU format, the value of the CRC check bit is		
06H	frame	inconsistent with the CRC value calculated by the downstream		
		device.		
0711	Parameter	The parameter to be modified in the write operation of the host		
07H	read-only	controller is a read-only parameter.		

Code	Name	Meaning
08H	Parameter cannot be modified in running	The parameter to be modified in the write operation of the host controller cannot be modified during the running of the VFD.
09H	Password protection	If the host controller does not provide the correct password to unlock the system to perform a read or write operation, the error of "system being locked" is reported.

7.3.6 Communication commissioning

In the following example, a PC is used as the master, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The host controller commissioning software is the serial port commissioning assistant Commix1.4, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix

Set **Port** to **COM1**. Set **BaudRate** consistently with P14.01. **DataBits**, **Parity**, and **StopBits** must be set consistently with P14.02. If the RTU mode is selected, choose **Input HEX** and **Show HEX**. To implement automatic CRC, you need to choose **ModbusRTU**, and set **Start Byte** to **1** and **CRC Type** to **CRC16 (MODBU SRTU)** in the **CRC Settings** window. After the automatic CRC is enabled, do not enter CRC in commands. Otherwise, command errors may occur due to repeated CRC.

The commissioning command for setting the VFD whose address is 03H to run forward is

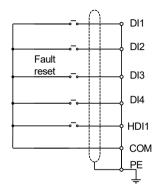
as follows:

03 VFD Write Parameter address command address Address CRC

✓ Note:

- The VFD address (P14.00) must be set to 03.
- "Channel of running commands" (P00.01) must be set to "Communication", and
 "Communication channel of running commands" (P00.02) to "Modbus".
- After you click **Send**, if the line configuration and settings are correct, a response transmitted by the VFD is received.

03	06	2000	00 01	<u>42 28</u>
VFD	Write	Parameter	Forward	CRC
address	command	address	running	


8 Fault handling

8.1 Fault indication and reset

When the RUN/TUNE, FWD/REV, and LOCAL/REMOT indicators are on at the same time, the VFD is in abnormal state, with the keypad showing the fault code. For details about fault causes and solutions, see section 8.2 Faults and solutions. If the fault cause cannot be located, contact our local office for technical support. There are four methods to reset VFD faults:

Method 1 Press the STOP/RST key on the keypad.

Method 2 Set P05.01–P05.04 and P05.11 to 7 (Fault reset).

Method 3 Cut off the VFD power supply.

Method 4 In communication command control mode (P00.01=2), write 0007H to 2000H.

8.2 Faults and solutions

When a fault occurred, handle the fault as follows:

- Step 1 Check whether the keypad display is improper. If yes, contact the local ASTOR office.
- Step 2 If no, check the function codes in P07 group to determine the real state when the fault occurred.
- Step 3 Check the following table for the exception and solution.
- Step 4 Rectify the fault or ask for help.
- Step 5 After confirming the fault is removed, perform fault reset, and start running.

8.2.1 Common faults and

Fault code	Fault type	Possible cause	Solution
E4	Overcurrent during ACC	 ACC time too short. Load too large or sudden change of load. Start during motor rotating. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. When V/F control is used for motor control, v/F curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Grid voltage is too low. Hardware fault. 	 Increase the ACC time, or reduce the software current limit point through P11.06; if the process requires rapid ACC, increase the VFD capacity. Increase the VFD capacity to ensure that the motor does not experience stalling, and that the load equipment functions without any exception. Start after the motor stops, or select speed tracking start through P01.00. Check the VFD output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate, and perform parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve, and reduce the voltage corresponding to the frequency. To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. Improve the power quality, or increase the VFD capacity. Replace the VFD.
E5	Overcurrent during DEC	 DEC time too short. Software current limit point setting too high. Load too large or sudden 	 Increase the DEC time, or reduce the software current limit point through P11.06; if the process requires rapid DEC, increase the

Fault code	Fault type	Possible cause	Solution
		change of load. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. When V/F control is used for motor control, V/F curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Hardware fault.	VFD capacity. Reduce the software current limit point through P11.06. Increase the VFD capacity to ensure that the motor does not experience stalling, and that the load equipment functions without any exception. Check the VFD output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate, and perform parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve, and reduce the voltage corresponding to the frequency. To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. Replace the VFD.
E 6	Overcurrent during constant speed running	 Load too large or sudden change of load. Software current limit point setting too high. 3PH output current imbalance. When sensorless vector control is used for motor control, parameter autotuning is not performed. When V/F control is used for motor control, V/F 	 Increase the VFD capacity to ensure that the motor does not experience stalling, and that the load equipment functions without any exception. Reduce the software current limit point through P11.06. Check the VFD output voltage and motor resistance to ensure three-phase balance. Set the rated parameters according to the motor nameplate, and perform

Fault code	Fault type	Possible cause	Solution
		curve setting is abnormal. There are strong external interference sources (contactor switchover or improper grounding). Grid voltage is too low. Hardware fault.	parameter autotuning through P00.15. Adjust the frequency and voltage relationship set by the V/F curve, and reduce the voltage corresponding to the frequency. To avoid strong interference, keep the motor cables away from contactors and ensure reliable grounding of the system. Improve the power quality, or
E7	Overvoltage during ACC	 ACC time too short. Grid voltage too high. Start during motor rotating. Load energy regeneration is too large. Improper setting of overvoltage stall protection. 	increase the VFD capacity. ● Replace the VFD. ● Increase the ACC time or enable overvoltage stall protection. ● Improve the power quality to comply with the VFD input voltage specifications (refer to product specifications). ● Start after the motor stops, or select speed tracking start through P01.00. ● Install a braking unit and energy feedback unit, or remove external factors that cause the load to generate power. ● Enable overvoltage stall protection through P11.03, and lower the overvoltage stall protection voltage value of P11.04.
E8	Overvoltage during DEC	 Deceleration time too short. Grid voltage too high. Load energy regeneration is too large. Improper setting of overvoltage stall protection. 	 Increase the DEC time; if the process requires rapid DEC, braking units, energy feedback units can be added, or the magnetic flux braking function can be used. Improve the power quality to comply with the VFD input voltage specifications (refer to

Fault code	Fault type	Possible cause	Solution
			product specifications). Install a braking unit and energy feedback unit, or remove external factors that cause the load to generate power. Enable overvoltage stall protection through P11.03, and lower the overvoltage stall protection voltage value of P11.04.
E9	Overvoltage during constant speed running	 Grid voltage too high. Load energy regeneration is too large. Improper setting of overvoltage stall protection. 	 Improve the power quality to comply with the VFD input voltage specifications (refer to product specifications). Install a braking unit and energy feedback unit, or remove external factors that cause the load to generate power. Enable overvoltage stall protection through P11.03, and lower the overvoltage stall protection voltage value of P11.04.
E10	DC bus undervoltage	 Grid voltage is too low. Abnormal bus voltage display. Abnormal precharge contactor closing. Running under heavy load in the event of input phase loss. 	 Increase grid input voltage. Contact us. Contact us. Check for abnormal input power and loose input cables.
E11	Motor overload	 Grid voltage is too low. Motor rated current is set incorrectly. Motor stall or load jumps violently. 	 Increase grid input voltage. Reset the motor rated current in the motor parameter group. Check the load and adjust torque boost.
E12	VFD overload	ACC is too fast.The motor is restarted	Increase ACC time.Avoid restart after stop.

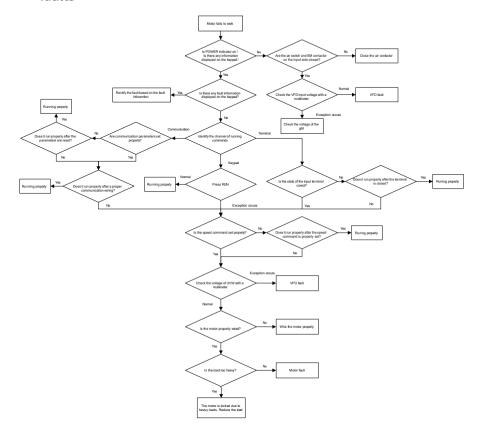
Fault code	Fault type	Possible cause	Solution
		during rotating. Grid voltage is too low. Load is too heavy. VFD power is too small.	Increase grid input voltage.Select a VFD with larger power.
E13	side phase loss	 Phase loss or significant fluctuations in input L1, L2, or L3. Input-side screws are loose. 	 Check for abnormal input power and loose input cables. Set P11.00 to screen out the fault.
E14	Output side phase loss	 Output cables are broken or short connected to the ground. UVW phase loss (or the three phases of load are seriously asymmetrical). Note: The output phase loss detection time requires at least 2.5s. After phase loss, instability may occur, potentially triggering overcurrent, overvoltage, overload, and speed deviation faults. 	• Check for loose or broken output cables. Check for sharp load fluctuation and motor 3PH resistance imbalance.
E16	erter module overheat	 Air duct is blocked or fan is damaged. Ambient temperature is too high. Long-time overload running. 	 Ventilate the air duct or replace the fan. Keep good ventilation to lower ambient temperature. Select a VFD with larger power.
E17	External fault	 DI terminal external fault input signal acted. 	 Check whether external device input is normal.
E18	Modbus/Modbus TCP nunication fault	 Incorrect baud rate Communication line fault. Incorrect communication address. Communication suffers 	 Set a proper baud rate. Check the communication port wiring. Set the communication address correctly. You are recommended to use

Fault code	Fault type	Possible cause	Solution
		from strong interference.	shielded cables to improve anti-interference.
E19	Current detection fault	 Abnormal motor cable or motor insulation. 	Remove motor cables to check.Contact us.
E20	Motor autotuning fault	 Motor capacity does not match with the VFD capacity. This fault may occur if the capacity difference exceeds five power classes. Incorrect motor parameter setting. The parameters gained from autotuning deviate sharply from the standard parameters. Autotuning timeout. Pulse current setting is too large. 	 Change the VFD model, or adopt V/F mode for control Check motor wiring, motor type, and parameter settings. Empty the motor load and re-perform autotuning. Check whether the upper limit frequency is larger than 2/3 of the rated frequency. Decrease the pulse current setting properly.
E21	EEPROM operation fault	 Error in reading or writing control parameters EEPROM damaged. 	Press STOP/RST to reset.Replace the control board.
E22	PID feedback offline.	 PID feedback offline. PID feedback source disappears. 	Check PID feedback signal wires. Check PID feedback source.
E23	king unit fault	 Fault occurred to the braking circuit or the braking pipe is damaged. External braking resistor with small resistance. 	 Check the braking unit, and replace with new braking pipe Increase the braking resistance.
E24	Running time reached	• Actual VFD running time longer than internally set running time.	• Contact us.
E25	Electronic overload	 The VFD reports the overload alarm according to the setting. 	• Check whether the overload alarm point is set properly.

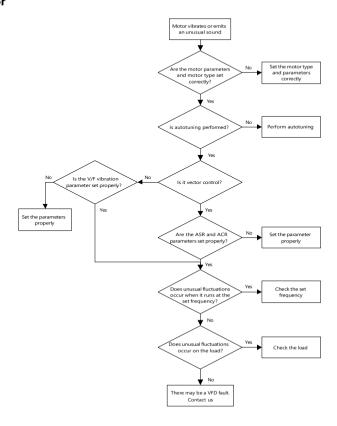
Fault code	Fault type	Possible cause	Solution
E27	Parameter upload error	 Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad or mainboard communication circuit error. 	 Check the keypad cable and re-plug to determine whether a fault occurs. Check the surroundings to rule out interference source Replace the hardware and seek maintenance services.
E28	Parameter download error	 Keypad cable connected improperly or disconnected. Keypad cable too long, causing strong interference. Keypad data storage error 	 Check the surroundings to rule out interference source Replace the hardware and seek maintenance services. Check whether the version of the control board software of keypad backup parameter copy is the same as the version of the control board software of the VFD.
E30	Ethernet communication fault	 No data transmission between the communication card and the host controller (or PLC). 	Check whether the communication card wiring is loose or dropped.
E32	To-ground short-circuit fault	 The output of the VFD is short circuited to the ground. Current detection circuit fault. Actual motor power setup deviates sharply from the VFD power. 	 Check whether the motor is short circuited to the ground and wiring is normal. Check whether the motor wiring is normal. Replace the main control board. Reset the motor parameters properly.
E34	deviation fault	Load too heavy or stalled.	 Check for overload, increase speed deviation detection time, or prolong ACC/DEC time. Check motor parameter settings and re-perform motor parameter

Fault code	Fault type	Possible cause	Solution
			autotuning.Check speed loop control parameter settings.
E35	adjustment fault	 Load exception. Incorrect SM parameter settings. Autotuned motor parameters are inaccurate. The VFD is not connected to the motor. Flux weakening application. 	Check for overload or stalling. Check motor parameter and counter EMF settings. Re-perform motor parameter autotuning. Increase the maladjustment detection time. Adjust flux weakening coefficient and current loop parameters.
E36	Underload fault	 The VFD reports the underload alarm according to the setting. 	Check the load and overload alarm thresholds.
E40	Safe torque off	 Safe torque off function is enabled by external forces. 	-
E41	Safety circuit exception of STO channel 1	 The wiring of STO is improper Fault occurred to 	Check whether terminal wiring of STO is proper and firm enough.Check whether the external
E42	Safety circuit exception of STO channel 2	external switch of STO. Channel safety circuit hardware fault.	 switch of STO can work properly Replace the control board. Note: Re-power on is required to remove the fault.
E43	Exception to both STO channel 1 and channel 2	Hardware fault occurred to STO circuit.	• Replace the control board.
E44	STO safety code FLASH CRC check fault	Drive board fault.	Replace the drive board.
E57	PROFINET communication timeout	 No data transmission between the communication card and host controller (or PLC). 	Check whether the communication card wiring is loose or dropped.

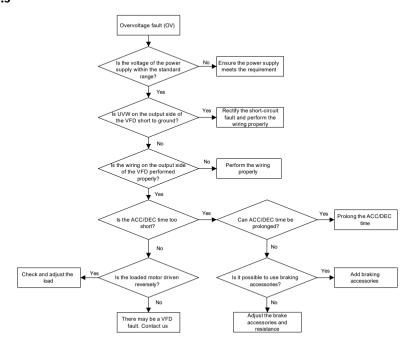
Fault code	Fault type	Possible cause	Solution
E59	Motor overtemperatur e fault	 Equipment or ambient temperature too high. AI/AO detected temperature inaccurate. DI4 input motor overtemperature signal. 	 Lower the equipment or ambient temperature. Replace the temperature measuring resistor. Check the external temperature measuring terminal signal.
E60	Communication card identifying failure	• There is data transmission in communication card interface, but the card type cannot be identified.	 Check whether the expansion card in the slot is supported. Stabilize the expansion card interface after power-off, and check whether the fault persists
E63	Communication card communication timeout fault	No data transmission in the communication card interface.	at next power-on. Check whether the insertion port or card slot is damaged. If yes, replace the insertion port or card slot after power-off.
E66	EtherCAT communication timeout	 No data transmission between the communication card and the host controller (or PLC). 	Check whether the communication card wiring is loose or dropped.
E92	Al1 disconnection	Al1 input too low.Al1 wiring disconnected.	Connect a 5V or 10mA power
E93	Al2 disconnection	Al2 input too low.Al2 wiring disconnected.	source to check whether the input is normal. • Check the wiring or replace the
E94	Al3 disconnection	AI3 input too low.AI3 wiring disconnected.	cable.
E95	EtherNet IP communication timeout	 No data transmission between the communication card and the host controller (or PLC). 	Check whether the communication card wiring is loose or dropped.
E96	No upgrade bootloader	Upgrade bootloader missing.	• Contact us.
E587	Dual CPU communication fault 1	Dual CPU communication fault.	• Contact us.

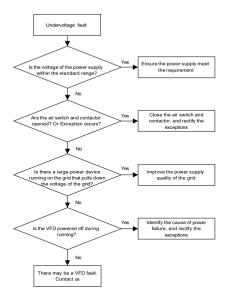

Fault code	Fault type	Possible cause	Solution
	Dual CPU	• Dual CPU	• Contact us.
E588	communication		
	fault 2	communication fault.	

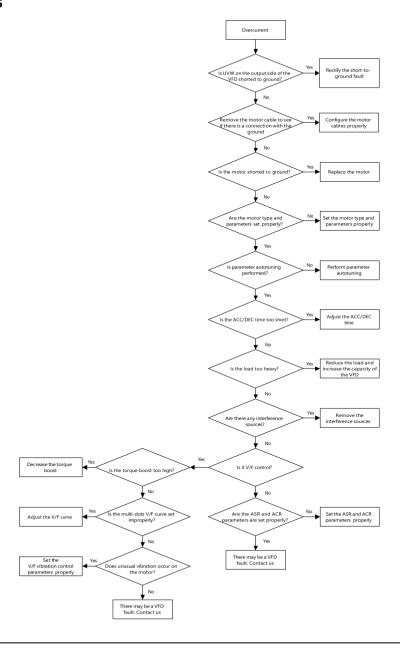
8.2.2 Other

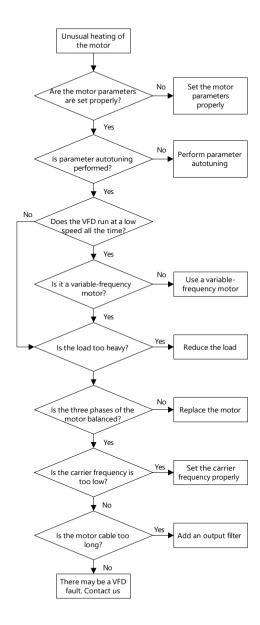

Displa y	Status type	Possible cause	Solution
PoFF	System power failure	The system is powered off or the bus voltage is too	Check the grid conditions.
1 011	System power randre	low.	check the grid conditions.

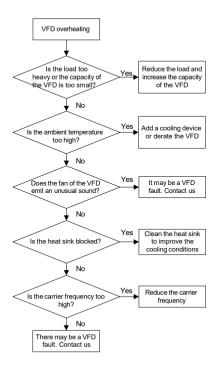
8.3 Analysis on common

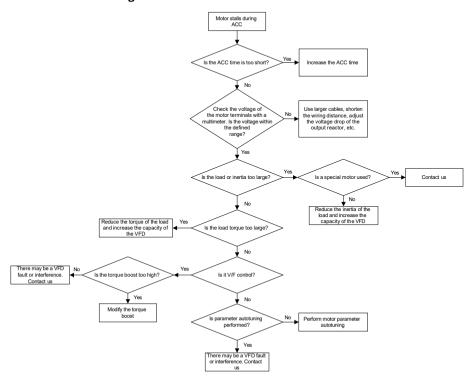

faults


8.3.2 Motor


8.3.3


8.3.4


8.3.5


8.3.6 Motor

8.3.7 VFD

8.3.8 Motor stalls during

8.4 Countermeasures on common

interference

Symptom	Solution	
The upper or lower limit is	• Check and ensure that the sensor feedback cable is 20cm or	
wrongly displayed, for	farther away from the motor cable.	
example, 999 or -999.	• Check and ensure that the ground wire of the motor is	
The display of values jumps	connected to the PE terminal of the VFD (if the ground wire	
(usually occurring on	of the motor has been connected to the ground block of the	
pressure transmitters).	VFD, you need to use a multimeter to measure and ensure	
The display of values is	that the resistance between the ground block and PE	
stable, but there is a large	terminal is lower than 1.5 Ω). At the same time, you need to	
deviation, for example, the	fasten the EMC AC screw and EMC DC screw/clip on the VFD.	

Symptom		Solution
temperature is dozens of	• 7	Try to add a safety capacitor of $0.1\mu F$ to the signal end of
degrees higher than the	t	the feedback signal terminal of the sensor.
common temperature	• 7	Try to add a safety capacitor of $0.1\mu F$ to the power end of
(usually occurring on	t	the sensor meter (pay attention to the voltage of the power
thermocouples).	5	supply and the voltage endurance of the capacitor).
A signal collected by a	• F	For interference when connecting the VFD analog output
sensor is not displayed but	((AO1) terminal to a meter: If AO1 uses 0–20mA current
functions as a drive system	S	signal, add a capacitor of $0.47\mu F$ between the AO1 and GND
running feedback signal.	t	terminals; if AO1 uses 0–10V voltage signal, add a capacitor
For example, the VFD is	C	of 0.1µF between the AO1 and GND terminals.
expected to decelerate	The	signal cable needs to use the shielded cable, and the
when the upper pressure	shiel	ld layer must be grounded reliably to the PE or GND.
limit of the compressor is		
reached, but in actual		
running, it starts to		
decelerate before the		
upper pressure limit is		
reached.		
All kinds of meters (such as		
frequency meter and		
current meter) connected		
to the VFD AO terminal		
(AO1) display very		
inaccurate values.		
Proximity switches are		
used in the system. After		
the VFD is started, the		
indicator of a proximity		
switch flickers, and the		
output level flips.		

✓ Note:

• When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter.; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.

If a large number of meters or sensors are disturbed, it is recommended that you
configure an external C2 filter on the VFD input power end. For details, see appendix
E.3.2 Filter.

8.4.2 Interference on RS485 communication

Symptom	Solution	
Check whether the RS485	• Arrange the communication cables and motor cables in	
communication bus is	different cable trays.	
disconnected or in poor	,	
contact.		
	chrysanthemum connection mode to connect the	
Check whether the two	communication cables between VFDs, which can improve	
ends of line A or B are	the anti-interference capability.	
connected reversely.	In multi-VFD application scenarios, check and ensure that	
	the driving capacity of the master is sufficient.	
	In the connection of multiple VFDs, you need to configure	
	one 120 Ω terminal resistor on each end.	
	• Check and ensure that the ground wire of the motor is	
	connected to the PE terminal of the VFD (if the ground wire	
	of the motor has been connected to the ground block of the	
	VFD, you need to use a multimeter to measure and ensure	
Check whether the	that the resistance between the ground block and PE	
communication protocol of	terminal is lower than 1.5 Ω). At the same time, you need to	
the VFD is consistent with	fasten the EMC AC screw and EMC DC screw/clip on the VFD.	
that of the upper	Do not connect the VFD and motor to the same ground	
computer. Check whether	terminal as the host controller (such as the PLC, HMI, and	
the communication	touch screen). It is recommended that you connect the VFD	
protocol (such as the baud	and motor to the power ground, and connect the host	
rate, data bits, and check	controller separately to a ground stud.	
bit) of the VFD is consistent	Try to short the signal reference ground terminal (GND) of	
with that of the host	the VFD with that of the host controller to ensure that	
	ground potential of the communication chip on the control	
computer.	board of the VFD is consistent with that of the	
	communication chip of the host controller.	
	Try to short GND of the VFD to its ground terminal (PE).	
	Try to add a safety capacitor of 0.1μF at the power supply	
	end of the host controller (PLC, HMI, or touch screen).	
	Alternatively, use a magnet ring (Fe-based nanocrystalline	
	magnet rings are recommended). Pass the L/N cable or +/-	
	cable of the host controller power supply through the	

Symptom	Solution	
	magnet ring in the same direction and wind around the	
	magnet ring for 8 turns.	

8.4.3 Failure to stop and indicator shimmering due to motor cable

Symptom	Solution
Failure to stop In a VFD system where a DI terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the DI terminal cannot be	 Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable. Add a safety capacitor of 0.1µF between the digital input (DI) terminal and the COM terminal.
used to stop the system. Indicator shimmering After the VFD is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmer, blink, or emit unusual sounds unexpectedly.	Connect the digital input (DI) terminal that controls the start and stop to other idle digital input terminals in parallel. For example, if DI1 is used to control the start and stop and DI4 is idle, you can try to short connect DI1 to DI4.

✓ Note: If the controller (such as PLC) in the system controls more than five VFDs at the same time through digital input terminals, this scheme is not applicable.

8.4.4 Leakage current and interference on RCD

Working principle

VFDs output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of a VFD and the heat sink and that between the stator and rotor of a motor may inevitably cause the VFD to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of a VFD may cause misoperation of a RCD.

Rules for selecting RCDs

- 1. VFD systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the VFDs are grounded reliably.
- 2. For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions need to be longer than 20ms, for example, 1s, 0.5s, or 0.2s.
- 3. For circuits in VFD systems, electromagnetic RCDs are recommended.

 Electromagnetic RCDs have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
	Requiring highly sensitive, accurate, and
	stable zero-phase sequence current
Low cost, high sensitivity, small in volume,	transformer, using permalloy
susceptible to voltage fluctuation of the grid	high-permeability materials, complex process,
and ambient temperature, and weak	high cost, not susceptible to voltage
anti-interference capability	fluctuation of the power supply and ambient
	temperature, strong anti- interference
	capability

Symptom		Solution
RCD misoperation at the	•	Solution to RCD misoperation (handling the VFD)
transient VFD power-on		> Try to remove the EMC AC screw and EMC DC
		screw/clip from the VFD.
		> Try to decrease the carrier frequency to 1.5kHz
		(P00.14=1.5).
		> Try to modify the modulation method to "Switch from
		SVPWM to DPWM" (P08.42=00).
	•	Solution to RCD misoperation (handling the system power
		distribution)
		> Check and ensure that the power cable is not soaking
RCD misoperation after VFD		in water.
running		> Check and ensure that cables are not damaged or
		spliced.
		> Check and ensure that no secondary grounding is
		performed on the neutral wire.
		> Check and ensure that the main power cable terminal
		is in good contact with the air switch or contactor (all
		screws are tightened).
		> Check 1PH powered devices, and ensure that no earth
		wires are used as neutral wires by these devices.

Symptom	Solution	
	Do not use shielded cables as VFD power cables and	
	motor cables.	

8.4.5 Live device

■ Live device housing description

After the VFD is started, there is sensible voltage on the housing, and you may feel an electric shock when touching the housing. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the VFD is powered on but not running.

Symptom	Solution	
Live device housing	 If there is power distribution grounding or ground stud on the site, ground the VFD cabinet housing through the power ground or stud. If there is no grounding on the site, you need to connect the motor housing to the VFD grounding terminal PE, and ensure that the VFD EMC AC screw and EMC DC screw/clip have been fastened. 	

9 Inspection and maintenance

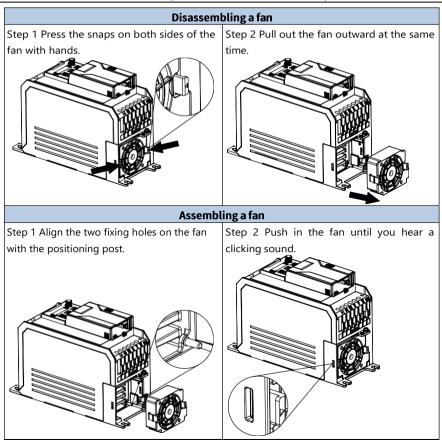
9.1 Daily inspection and regular maintenance

The VFD internal components will become aging due to the influence of environmental temperature, humidity, dust, vibration and other factors, which causes the potential failure or shortens the service life. Therefore, to extend the VFD service life and prevent safety hazards, daily inspection and regular maintenance are required.

Check category	Content	Method	
Daily inspection: Recommended on each day.			
Ambient environment	Whether the ambient temperature, humidity, vibration, dust, gas, and oil are too great, and whether there is condensation or water droplets inside and outside the machine	Visual inspection and instrument measurement	
	Whether there are foreign matters, such as tools, or dangerous substances placed nearby Whether the voltage between the main circuit	Visual inspection Multimeter or	
Power supply voltage	and control circuit is normal	voltage meter	
	Whether display is clear	Visual inspection	
Keypad	Whether some characters or fields are displayed incompletely	Visual inspection	
Fan	Whether it runs normally	Visual inspection	
Load	Whether the motor is overloaded or overheating, or it sounds abnormally.	Visual inspection	
Regular maintenance: Recommended on a quarterly basis, especially in harsh environments such as with dust, oil, or corrosive gases. Before regular maintenance, cut off the power and wait at least 15 min.			
	Whether the bolts become loose or come off	Visual inspection	
	Whether the machine is deformed, cracked, or damaged, or the color changes due to overheating and aging	Visual inspection	
Complete machine	Whether much dirt or dust is attached	Visual inspection	
	Whether there is abnormal sound or vibration, odor, discoloration (transformer, reactor and fan)	Auditory, olfactory, and visual inspection	
Motor	Whether the installation is secure, motor		

Check category	Content	Method
Cable	Whether there is discoloration, deformation, or damage	Visual inspection
	Whether the cable connectors or bolts become loose	Visual inspection
Connection terminal	Whether there is overheating or damage	Visual inspection
Electrolytic capacitor	Whether there is electrolyte leakage, discoloration, cracks, and housing expansion	Visual inspection
	Whether the safety valve is exposed outside	Visual inspection
rnal braking resistor	Whether there is displacement caused due to overheating	Olfactory and visual inspection
	Whether aging, skin breakage, or wire damage occurs to the resistor cable	Visual inspection, or measuring with a multimeter after removing one cable end
Relay	Whether there is vibration sound during running	Auditory inspection
ntrol PCB and connector	Whether the screws and connectors become loose	Screw them up.
	Whether there is unusual smell or	Olfactory and visual
	discoloration	inspection
	Whether there is corrosion or rust stains	Visual inspection
Ventilation duct	Whether there are foreign matters blocking or attached to the cooling fan, air inlets, or air outlets	Visual inspection

For more details about maintenance, contact the local ASTOR office, or visit our website www.astor.com.pl, and choose **Support** > **Services**.


9.2 Cooling fan replacement

The wearing part of VFD is the cooling fan, of which the service life is closely related to the running environment and maintenance condition.

■ Possible damage cause

Bearing wear, blade aging, water, oil, dust and other environmental factors may cause circuit board damage.

■ Cooling fan replacement procedure

Note: Before disassembling or installing the VFD, stop the VFD, cut off the power, and wait at least 5 minutes.

9.3 Reforming

If the VFD has been left unused for a long time, you need to follow the instructions to reform the DC bus electrolytic capacitor before using it. The storage time is calculated from the date the VFD is delivered. For detailed operation, contact us.

Storage time	Operation principle
Less than 1 year	No charging operation is required.
1 to 2 years	Before the first run, apply the voltage of one class lower than the
	VFD voltage class to the VFD for 1 hour.
2 to 3 years	Use a voltage controlled power supply to charge the VFD:

Storage time	Operation principle
	• Charge the VFD at 25% of the rated voltage for 30 minutes,
	• and then charge it at 50% of the rated voltage for 30 minutes,
	• at 75% for another 30 minutes,
	• and finally charge it at 100% of the rated voltage for 30 minutes.
	Use a voltage controlled power supply to charge the VFD:
More than 3 years	• Charge the VFD at 25% of the rated voltage for 2 hours,
	• and then charge it at 50% of the rated voltage for 2 hours,
	• at 75% for another 2 hours,
	• and finally charge it at 100% of the rated voltage for 2 hours.

The method for using a voltage controlled power supply to charge the VFD is described as follows:

The selection of a voltage controlled power supply depends on the power supply of the VFD. For VFDs with an incoming voltage of 1PH/3PH 220V AC, you can use a 1PH 220V AC/2A voltage regulator. Both 1PH and 3PH VFDs can be charged with a 1PH voltage controlled power supply (connect L+ to L1, and N to L2 or L3). All the DC bus capacitors share one rectifier, and therefore they are all charged.

For VFDs of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380V drive device, use a resistor of $1k\Omega/100W$. If the voltage of the power supply is no higher than 380V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

Resistor 1 kO/100W

L3

W

Figure 9-1 380V drive device charging circuit example

Appendix A Expansion card

The VFD supports the use of communication expansion cards to enhance communication capabilities. The following table lists the supported expansion cards. The expansion cards are optional and must be purchased separately.

A.1 Model definition

Table A-1 Expansion card model description

No.	Field	Description	
1	Product	AS240: Expansion card dedicated to DRV-240 VFD series	
1	category		
2	Board card	MPC: PROFINET/EtherCAT/EtherNet IP/Modbus TCP, EoE	
	category		
3	Product code	0001: Expansion card version	

Figure A-1 Expansion card physical image

A.2

Table A-2 Expansion card specifications

Parameter	Specifications
Working temperature	-10-+50°C
Storage temperature	-20-60°C
Relative humidity	5%–95% (No condensation)
Operating	
environment	No corrosive gas

Parameter	Specifications	
Mounting method Fixed with snap-fits and screws		
Cooling method	Natural air cooling	
Communication rate	100M bit/s	
N	Supports both linear and star network topologies, with certain	
Network topology	protocols also accommodating ring network topology.	

Figure A-2 Expansion card drawing

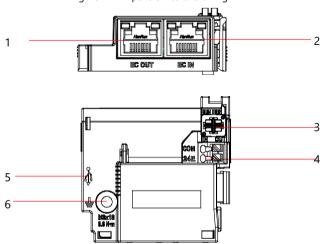


Table A-3 Product component description

No.	Name	Description		
		Supported bus types: PROFINET, EtherCAT, EtherNet IP,		
1	nunication port (EC	Modbus TCP, and EtherNet UDP		
'	OUT)	EtherCAT can be only used in the OUT port, while the		
		other protocols do not distinguish the direction.		
		Supported bus types: PROFINET, EtherCAT, EtherNet IP,		
2	unication port (EC IN)	Modbus TCP, and EtherNet UDP		
		EtherCAT can be only used in the IN port, while the other		
		protocols do not distinguish the direction.		
3	Indicator	For details, see appendix A.4 Indicator.		
	+24E	An external 24V connection can be used for		
4	СОМ	communication debugging.		
5	Type-C	Manufacturer reserved		
	F	Used for expansion card and control board installation		
6	Fixing hole	and fixing.		

A.3 Protocol parameter

Table A-4 Expansion card protocol selection

Function code	Protocol	Description
	0–15	
	0: PROFINET	tory setting is 0.
	1: EtherCAT	
	2: Reserved	
	3: EtherNet IP	
P24.00	4: Modbus TCP	
	5: EtherNet UDP	
	6: PROFINET+EtherNet UDP	
	7: EtherCAT+EtherNet UDP	
	8–14: Reserved	
	15: No communication expansion card	

Table A-5 Protocol description

Protocol	Description			
	1. Supports the PROFINET protocol, accommodating PROFINET IO devices,			
	medium redundancy protocol (MRP), and system redundancy protocol			
	(S2). Equipped with the slave station GSDML configuration file, it can			
PROFINET	communicate with Siemens PLC and other master stations.			
PROFINEI	2. Enables basic operations on VFDs, such as reading and writing process			
	values, reading status values, and reading/writing function codes. This			
	communication card supports up to 32 IOs.			
	3. Applicable to linear, star, and ring network topologies.			
	1.Supports the CiA301 and CiA402 CoE protocols. Configured with a slave			
	station XML configuration file, it can communicate with Beckhoff PLC,			
	Astraada AX controllers, and other master stations.			
	2. Supports PDO and SDO services, manufacturer-defined object			
EtherCAT	dictionaries, and SDO reading/writing of VFD function codes, meeting			
	the EtherCAT compliance testing certification requirements within the			
	factory.			
	3. Applicable to linear, star, and ring network topologies.			
	4. Equipped with two RJ45 ports, designated for IN and OUT directions.			
	1.Supports ODVA standards and DLR ring protocol. When configured with			
Ethernet IP	a slave station EDS configuration file, it can communicate with Rockwell			
Luieinet ir	PLC and other master stations.			
	2. Enables basic operations on VFDs, such as reading and writing process			

Protocol	ocol Description		
	values, reading status values, and reading/writing function codes. This		
	communication card supports up to 32 IOs.		
3. Applicable to linear, star, and ring network topologies.			
	1. Supports the Modbus TCP protocol. A Modbus TCP slave station can		
	communicate with multiple master stations simultaneously. It can		
	communicate with Schneider PLC, AX controllers, and other master		
Modbus TCP	stations.		
	2. Enables basic operations on VFDs, such as reading and writing process		
	values, reading status values, and reading/writing function codes.		
	3. Applicable to linear and star network topologies.		
	1. Supports Ethernet protocol, connecting to the Astraada Drive Studio for		
EtherNet UDP	monitoring and oscilloscope functions, allowing for multi-card network		
Ethernet ODP	monitoring.		
	2. Applicable to linear and star network topologies.		
PROFINET +	Supports concurrent PROFINET and EtherNet UDP communications on		
EtherNet UDP	the same network.		
EtherCAT +	Supports concurrent EtherCAT and EtherNet UDP communications on the		
EtherNet UDP	same network, with EtherCAT required to remain online.		

A.4

Table A-6 PROFINET communication indicators

Indicator	Color	Definition	Function
			Communication established
		Steady on	successfully, with normal IO data
			exchange.
		Blinking	Communication established
		(on for 500ms, off for	successfully, but without valid IO data
	Green	500ms)	exchange.
BUN			In the communication configuration
RUN		Blinking	phase. For example, when DCP
		(on for 100ms, off for	configuration commands are triggered,
		100ms)	it will blink simultaneously with the ERR
			indicator.
			The communication between the
		Steady off	communication card and PLC is not in
			Online state.
IN(HOST)	Green	Steady on	The communication card is in the

Indicator	Color	Definition	Function
			process of handshaking with the VFD.
			The communication card and VFD
			communicate normally.
		Blinking	∠Note: After the handshaking is
		(on for 500ms, off for	completed, it should blink regardless of
		500ms)	whether there is data transmission
			between the communication card and
			the main control board.
			The communication card is in the
		Steady off	initialization or parameter
			configuration phase.
			No data update or abnormal update
	Green	Steady off	between the communication card and
OLIT(DATA)			main control board.
OUT(DATA)		Blinking	The data update between the
		(on for 500ms, off for	communication card and main control
		500ms)	board is normal.
	Red	Steady off	No fault
500		Blinking	
ERR		(on for 100ms, off for	Communication establishment is
		100ms)	abnormal.

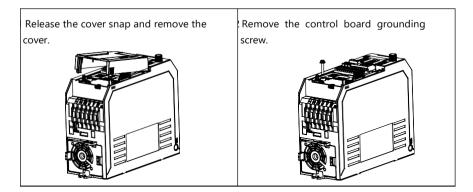
Table A-7 EtherCAT communication indicators

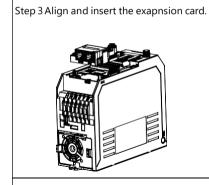
Indicator	Color	Definition	Function
		Steady off	In Init state.
		Blinking	
		(on for 200ms, off for	In PreOP state.
RUN	Green	200ms)	
		Single flash	In CafaOD atota
		(on for 200ms, off for 1s)	In SafeOP state.
		Steady on	In OP state.
	Green	Steady on	IN Link established, without data
			transmission.
IN(L/A IN)		Blinking	IN Link established, with data
		(on for 50ms, off for 50ms)	transmission.
		Steady off	IN LINK not established.
OUT(L/A OUT)	Green	Steady on	OUT Link established, without data
OUT(L/A OUT)			transmission.

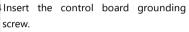
Indicator	Color	Definition	Function
		Blinking	OUT Link established, with data
		(on for 50ms, off for 50ms)	transmission.
		Steady off	OUT LINK not established.
	Red	Steady off	No fault
ERR		Blinking (on for 200ms, off for 200ms)	The Init/Preop fault occurred.
		Single flash (on for 200ms, off for 1s)	The Safeop fault occurred.
		Steady on	The OP fault occurred.

Table A-8 EtherNet IP communication indicators

Indicator	Color	Definition	Function
			The communication between the
		Steady on	communication card and the PLC is
			online, and data exchange is allowed.
		Blinking	Abnormal setting of the IP address for
RUN	Green	(on for 500ms, off for	either the communication card or the
		500ms)	PLC.
			The communication between the
		Steady off	communication card and PLC is not in
			Online state.
	Green	Steady on	The communication card is in the
			process of handshaking with the VFD.
			The communication card and VFD
			communicate normally.
		Blinking	∠Note: After the handshaking is
IN(HOST)		(on for 500ms, off for	completed, it should blink regardless of
114(11031)		500ms)	whether there is data transmission
			between the communication card and
			the main control board.
			The communication card is in the
		Steady off	initialization or parameter configuration
			phase.
	Green		No data update or abnormal update
OUT(DATA)		Steady off	between the communication card and
OUT(DATA)			main control board.
		Blinking	The data update between the


Indicator	Color	Definition	Function
		(on for 500ms, off for 500ms)	communication card and main control board is normal.
		Steady off	No fault
		Blinking (on for 500ms, off for 500ms)	Incorrect PLC configuration.
ERR	Red	Blinking (on for 250ms, off for d 250ms)	The communication card failed to send data to the PLC.
		Blinking (on for 125ms, off for 125ms)	The connection between the communication card and PLC timed out.
		Steady on	Failed to set up data communication between the communication card and PLC.


Table A-9 Modbus TCP communication indicators


Indicator	Color	Definition	Function
			The communication between the
		Steady on	communication card and the PLC is
			online, and data exchange is allowed.
		Blinking	Abnormal setting of the IP address for
RUN	Green	(on for 500ms, off for	either the communication card or the
		500ms)	PLC.
			The communication between the
		Steady off	communication card and PLC is not in
			Online state.
		C	The communication card is in the
		Steady on	process of handshaking with the VFD.
			The communication card and VFD
	Green		communicate normally.
		Blinking	∠Note: After the handshaking is
IN(HOST)		(on for 500ms, off for	completed, it should blink regardless of
		500ms)	whether there is data transmission
			between the communication card and
			the main control board.
		Ctoody off	The communication card is in initialization
		Steady off	or parameter configuration.

Indicator	Color	Definition	Function
			No data update or abnormal update
		Steady off	between the communication card and
OUT(DATA)	Cuasa	-	main control board.
OUT(DATA)	Green	Blinking	The data update between the
		(on for 500ms, off for	communication card and main control
		500ms)	board is normal.
		C. I	The communication between the
		Steady on	communication card and PLC is offline.
		Blinking	An attempt to operate an unsupported
		(on for 500ms, off for	CMD control word instruction or PR
ERR	Red	500ms)	function code value.
	Blinking		
		(on for 62.5ms, off for	An attempt to operate on a non-existent
		62.5ms)	node address.
		Steady off	The communication between the communication card and PLC is normal.

A.5 Expansion card installation and wiring

Step 5 Install the cover.

A.5.2 Expansion card wiring

Figure A-3 Product network port structure

Table A-10 RJ45 network port functions

No.	Port	Description
1	TX+	Transmit Data+
2	TX -	Transmit Data-
3	RX+	Receive Data+
4	n/c	Not connected
5	n/c	Not connected
6	RX -	Receive Data-
7	n/c	Not connected
8	n/c	Not connected

The communication card uses standard RJ45 interfaces, and its electrical connections are shown in the following figures.

Note: It is recommended to use double-twisted shielded Category 5e Ethernet cables, with crystal heads equipped with iron shells to meet the grounding shield protection.

Figure A-4 Linear network topology electrical connection

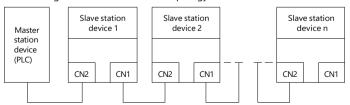
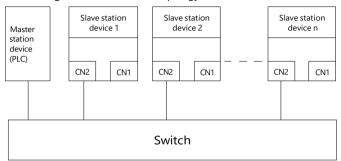
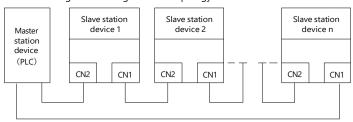




Figure A-5 Star network topology electrical connection

Note: For the star network topology, you need to prepare switches.

Figure A-6 Ring network topology electrical connection

A.6 Commissioning

Ensure that the electrical connection between the PLC and card is correct.

Wait for the completion of power-up for the PLC and card.

Check the setting of the expansion card protocol selection function code (P24.00).

Check the expansion card type and version.

Yes

Set other function codes.

Figure A-7 Expansion card commissioning flowchart

When 14.71 is 0 (defined in decimal), the VFD control word (CW) definitions are as follows:

Bit	Name	Value	Description
		1	FWD run
		2	REV run
		3	Jog forward
		4	Jog reversely
0–7	mmunication-based	5	Stop
	control command	6	Coast to stop
		7	Fault reset
		8	Stop jogging
		9	Stop in emergency manner

Table A-11 Goodrive28 series VFD CWs in decimal

Bit	Name	Value	Description
8	Enable write/read	1	Enable read and write (PKW1–PKW4)
0.10	NA-1	00	Select motor 1
9–10	Motor group setting	01	Select motor 2
11	Control mode selection	1	Select torque/speed control
11	Control mode selection	0	Do not select
		_	Enable the function for resetting power
12	Clear power	1	consumption to zero
12	consumption		Disable the function for resetting power
		0	consumption to zero
12	Day and taking	1	Enable pre- excitation
13	Pre-excitation	0	Disable pre- excitation
1.4	DC level in a	1	Enable DC braking
14	DC braking	0	Disable DC braking
15	He sath as to sefer a see	1	Enable heartbeat
15	Heartbeat reference	0	Disable heartbeat

When P14.71 is 1 (defined in binary), the VFD control CW definitions are as follows:

Table A-12 Goodrive28 series VFD CWs in binary

Bit	Name	Descrip	Description		
0	Forward running	0: Decelerate to stop	1: Run forward	1	
1	Reverse running	0: Decelerate to stop	1: Run reversely	2	
2	Fault reset	0: None	1: Fault reset	3	
3	Coast to stop	0: None	1: Coast to stop	4	
4	Forward jogging	0: None 1: Forward jogging		5	
5	Reverse jogging	0: None 1: Reverse jogging		6	
6	Stop jogging	0: None 1: Stop jogging	7		
7	-	Reserved		-	
8	Enable read and write (PKW1–PKW4)	0: None 1: Enable read and write		-	
9	-	Reserved	-		
10	Emergency stop	0: None 1: Emergency stop		0 (Top priority)	
11–15	Reserved	-		-	

When P14.71 is 0 (defined in decimal), the VFD status word (SW) definitions are as follows:

Table A-13 Goodrive28 series VFD SWs in decimal

Bit	Name	Value	Description
			Running forward
		2	Running reversely
0–7	Running status	3	Stopped
		4	In fault
		5	VFD in POFF state
0	Donate library and all library	1	Ready to run
8	Bus voltage established	0	Not ready to run
9–10	Matau augus fagallagal	0	Feedback from motor 1
9-10	Motor group feedback	1	Feedback from motor 2
11	Matautusa faadhadi	1	Synchronous motor (SM)
11	Motor type feedback	0	Asynchronous motor (AM)
12	Overload pre-alarm	1	Overload pre-alarm
12	feedback	0	No overload pre-alarm
		0	Keypad-based control
12 14	Din as was de sala ation	1	Terminal-based control
13–14	Running mode selection	2	Communication-based control
		3	Reserved
15		1	Heartbeat feedback
15	Heartbeat feedback	0	No heartbeat feedback

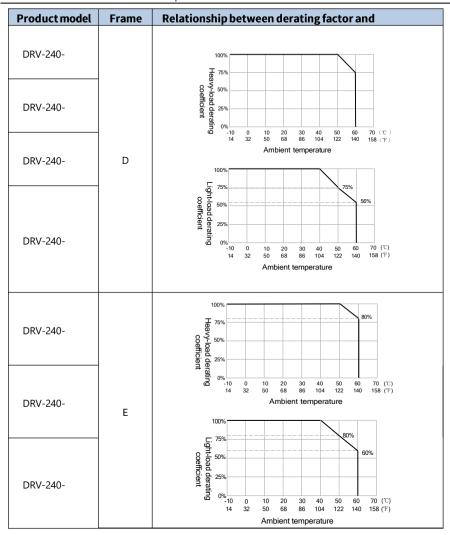
When P14.71 is 1 (defined in binary), the VFD SW definitions are as follows:

Table A-14 Goodrive28 series VFD SWs in binary

Bit	Name	Description	Priority
0	Forward running	0: None 1: Running forward	1
1	Reverse running	0: None 1: Running reversely	2
2	Stop	0: None 1: Stopped	3
3	Fault	0: None 1: VFD in fault	4
4	POFF	0: None 1: VFD in POFF state	5
5	Pre-exciting	0: None 1: VFD in pre-exciting state	6
6–15	Reserved	-	-

Appendix B Technical data

If the ambient temperature at the VFD installation site exceeds 50°C, the VFD installation site altitude exceeds 1000m, a ventilation cover is used, or the carrier frequency is higher than the recommended (see P00.14), the VFD needs to be derated. In environments where multiple derating factors must be considered (such as high altitude and high temperature), the derating effects are cumulative.


B.1 Derating due to temperature

The temperate range is -10°C-50°C. When the heavy load temperature is higher than 50°C, or the light load temperature is higher than 40°C, the rated output current of each model is derated as follows.

Product model Frame Relationship between derating factor and DRV-240-DRV-240-DRV-240-1009 DRV-240-Heavy-load derating 75% coefficient 50% DRV-240-25% DRV-240-60 70 (°C) 158 (°F) 122 140 DRV-240-14 32 50 Ambient temperature DRV-240-Α 100% 75% Light-load derating 56% coefficient 50% 0% -10 DRV-240-14 32 50 122 Ambient temperature

Table B-1 Derating due to ambient temperature

Product model	Frame	Relationship between derating factor and			
DRV-240-		100%			
DRV-240-		H 75%			
DRV-240-		Heavy-150% coefficient iii -10 0 10 20 30 40 50 60 70 (°C)			
DRV-240-		Sient 25%			
DRV-240-		14 32 50 68 86 104 122 140 158 (F)			
DRV-240-	В	Ambient temperature			
DRV-240-	В				
DRV-240-		100%			
DRV-240-		Ogh 10a 50%			
DRV-240-		75% 56% 56% 56% 56% 56% 56% 56% 56% 56% 5			
DRV-240-					
DRV-240-		100%			
DRV-240-		He 75% Coefficient 1100 % 10 20 30 40 50 60 70 (°C)			
DRV-240-					-10 0 10 20 30 40 50 60 70 (°C) 14 32 50 68 86 104 122 140 158 (°F) Ambient temperature
DRV-240-	C	100% Confliction 50% Operation 0 10 20 30 40 50 60 70 (°C) 14 32 50 68 86 104 122 140 158 (°F) Ambient temperature			

Note: It is not recommended to use the VFD at an environment with the temperature higher than 60°C. If you do, you shall be held accountable for the consequences caused.

B.2 Derating due to altitude

When the VFD installation site altitude is lower than 1000m, the VFD can run at the rated power. When the altitude exceeds 1000m, derate by 1% for every increase of 100m. When the altitude exceeds 3000m, consult our local dealer or office for details.

B.3 Derating due to carrier frequency

The carrier frequency of the VFD varies with power class. The VFD rated power is defined based on the carrier frequency factory setting.

M. d.l	Current coefficients at different carrier frequencies						
Model	4kHz	6kHz	8kHz	10kHz	12kHz		
AC 1PH 200V-240V							
DRV-240-0R2G-S2	1	1	1	0.9	0.85		
DRV-240-0R4G-S2	1	1	1	0.9	0.85		
DRV-240-0R7G-S2	1	1	1	0.9	0.85		
DRV-240-1R1G-S2	1	1	1	0.9	0.85		
DRV-240-1R5G-S2	1	1	1	0.9	0.85		
DRV-240-2R2G-S2	1	1	1	0.9	0.85		
DRV-240-004G-S2	1	1	1	0.9	0.85		
AC 3PH 200V–240V							
DRV-240-0R2G-2	1	1	1	0.9	0.81		
DRV-240-0R4G-2	1	1	1	0.91	0.84		
DRV-240-0R7G-2	1	1	1	0.94	0.89		
DRV-240-1R1G-2	1	1	1	0.95	0.91		
DRV-240-1R5G-2	1	1	1	0.96	0.93		
DRV-240-2R2G-2	1	1	1	0.98	0.96		
DRV-240-5R5G-2	1	1	1	0.93	0.86		
DRV-240-7R5G-2	1	1	1	0.93	0.87		
DRV-240-011G-2	1	1	1	0.93	0.88		
DRV-240-015G-2	1	1	1	0.91	0.84		
AC 3PH 380V-480V	•						
DRV-240-0R4G-4	1	0.79	0.65	0.54	0.46		
DRV-240-0R7G-4	1	0.81	0.68	0.58	0.50		
DRV-240-1R1G-4	1	0.82	0.69	0.59	0.52		
DRV-240-1R5G-4	1	0.85	0.73	0.64	0.57		
DRV-240-2R2G-4	1	0.85	0.73	0.64	0.56		
DRV-240-003G-4	1	0.87	0.76	0.67	0.60		
DRV-240-004G-4	1	0.85	0.72	0.63	0.55		
DRV-240-5R5G-4	1	0.87	0.77	0.68	0.61		
DRV-240-7R5G-4	1	0.87	0.77	0.68	0.60		
DRV-240-011G-4	1	0.87	0.77	0.68	0.61		
DRV-240-015G-4	1	0.88	0.79	0.71	0.64		
DRV-240-018G-4	1	0.87	0.77	0.68	0.61		
DRV-240-022G-4	1	0.84	0.72	0.62	0.55		

B.4 Grid

	AC 1PH 200V(-15%)-240V(+10%)
Grid voltage	AC 3PH 200V(-15%)-240V(+10%)
	AC 3PH 380V(-15%)–480V(+10%)
	According to IEC 61439-1, the rated short-time withstand current at the
	incoming terminals of the switchgear assembly is up to 100 kA. The VFD is
nort-circuit	suitable for applications where the prospective short-circuit current does not
capacity	exceed the breaking capacity (for example, 100 kA) of its protective devices,
	and its rated operational current is significantly lower than this value—
	typically ≤ 1 kA.
Frequency	50/60Hz±5%, with a maximum change rate of 20%/s

B.5 Motor connection

Motor type	Asynchronous induction motor or permanent-magnet synchronous motor						
Maltana	0–U ₁ (motor rated voltage), 3PH symmetrical, U _{max} (VFD rated voltage) at						
Voltage	the field-weakening point						
Short-circuit	The motor output short-circuit protection meets the requirements of IEC						
protection	61800-5-1.						
Frequency	0-599Hz						
Frequency							
resolution	0.01Hz						
Current	See section 2.3 Product ratings.						
Power limit	1.5 times the motor rated power						
Field-weakening	10 50011-						
point	10–599Hz						
Carrier	4.0.40						
frequency	4, 8, 12, or 15kHz						

B.5.1 Motor cable length for normal operation

Motor cable lengths for normal operation are listed in the following table.

Frame	Max. motor cable length
А	50m
В	75m
С	150m
D	200m
E	200m

Note: When the motor cable is too long, electrical resonance may be caused due to the influence of distributed capacitance. This may cause motor insulation damage or generate large leakage current, causing device overcurrent protection. You must configure the AC output reactor nearby the VFD when the cable length is longer than the corresponding value in the preceding table.

B.5.2 Motor cable length for EMC

The standard models meet the EMC requirements of IEC/EN61800-3, and the maximum shielded motor cable lengths used at a 4kHz switching carrier frequency are as follows.

	Max. moto	r cable length (unit: m)								
Frame	Standard model (with built-in fi	lter and EMC grounding	External filter							
	C2	С3	C2							
AC 1PH 20	00V-240V									
Α	5	15	50							
В	5	15	50							
С	5	15	50							
AC 3PH 20	00V-240V									
Α	-	15	50							
В	-	15	20/50 ¹							
С	-	15	20/50 ²							
D	-	15	50							
E	-	15	50							
AC 3PH 38	80V-480V									
Α	-	15	50							
В	-	15	20/50 ¹							
С	-	15	20/50 ²							
D	-	15	50							
Е	-	15	50							

Note:

- "1": For a frame-B 3PH model, with only an external input filter, it meets the C2 20m motor cable length requirement; when both input and output filters are added, it meets the C2 50m motor cable length requirement.
 - "2": For a frame-C 3PH model, with an external input filter and a carrier frequency of 2kHz, it meets the C2 20m motor cable length requirement; with both input and output filters and a carrier frequency of 4kHz, it meets the C2 50m motor cable length requirement.
- For details about product frames, see section 2.5 Product dimensions and weight.
- For details about C2 filters, see appendix E.3.2 Filter.

Appendix C Application standards

C.1 List of application standards

The following table describes the application standards that VFDs comply with.

FN//CO 13040 1	Safety of machinery—Safety related parts of control systems—Part 1:							
EN/ISO 13849-1	General principles for design							
EN 450 43040 3	Safety of machinery—Safety related parts of control systems—Part 2:							
EN/ISO 13849-2	Verification							
JEC /EN C0004 4	Safety of machinery—Electrical equipment of machines. Part 1:							
IEC/EN 60204-1	General requirements							
JEC /EN C20C1	Safety of machinery—Safety-related functional safety of electrical,							
IEC/EN 62061	electronic, and programmable electronic control systems							
150 01000 2	Adjustable speed electrical power drive systems—Part 3: EMC							
IEC 61800-3	requirements and specific test methods							
JEC /EN C1000 E 1	Adjustable speed electrical power drive systems—Part 5-1: Safety							
IEC/EN 61800-5-1	requirements—Electrical, thermal and energy							
JEG (EN C1000 E 3	Adjustable speed electrical power drive systems—Part 5-2: Safety							
IEC/EN 61800-5-2	requirements—Function							

C.2 CE/TUV/UL/CCS certification

The CE mark affixed to the VFD indicates that the VFD is CE-compliant, meeting the regulations of the European low-voltage directive (2014/35/EU) and EMC directive (2014/30/EU).

The TUV mark affixed to the VFD indicates that the VFD is TUV-compliant. TUV certification includes TUV-MARK, TUV-CE, TUV-CB, GS, and VDE certifications, which has high authority and recognition in the field of electronic appliances and components.

The UL mark affixed to the VFD indicates that the VFD has passed UL certification. UL certification is a voluntary certification in the United States (but mandatory in some states), and products that have passed the certification meet the relevant UL standard requirements can enter the US market.

The CCS mark affixed to the VFD indicates that the VFD is CCS-compliant. CCS is the ship inspection certification of China Classification Society. The certified products can be used on ships.

Note: The relevant certifications and qualifications shall be subject to the actual nameplate markings. The above information is for reference only.

C.3 EMC compliance declaration

The VFD complies with the EMC product standards EN 61800-3:2004 + A1:2012; EN IEC 61800-3: 2018; EN IEC 61800-3: 2023, meeting the requirements for categories C2 and C3 (motor cable length limit for ensuring EMC compliance) as defined in the standard.

C.4 EMC product standard

The VFD is compliant with EN 61800-3:2004 + A1:2012; EN IEC 61800-3: 2018; EN IEC 61800-3: 2023

EMC is short for electromagnetic compatibility, which refers to the ability of a device or system to function properly in its electromagnetic environment and not constitute an unbearable electromagnetic disturbance to anything in that environment.

Application environment categories:

First environment: Civilian environment, including application scenarios where the VFD is directly connected without intermediate transformer to a low-voltage power supply network which supplies residential buildings.

Note: The product may generate radio interference in the First environment. In addition to the CE compliance requirements mentioned in this chapter, you should take necessary measures to prevent interference when needed.

Second environment: All locations outside a residential area.

VFDs of C1: Rated voltage lower than 1000V, applied to the first environment.

VFDs of C2: Rated voltage lower than 1000V, neither a non-plug, socket, nor mobile devices, and must be installed and commissioned by a professional person when used in the first environment

Note: The product may generate radio interference in some environments, you need to take measures to reduce the interference.

VFDs of C3: Rated voltage lower than 1000 V, applied to the second environment. They cannot be applied to the first environment.

Note: VFDs of C3 cannot be applied to civilian low-voltage public grids. When applied to such grids, the VFD may generate radio frequency electromagnetic interference.

VFDs of C4: VFD of rated voltage higher than 1000V, or rated current higher or equal to 400A, applied to complex systems in the second environment.

Note: The EMC standard IEC/EN 61800-3 no longer restricts the power distribution of the VFD, but defines the use, installation, and commissioning of the VFD. Specialized personnel or organizations must have the necessary skills (including the EMC-related knowledge) for installing and/or performing commissioning on the electrical drive systems.

Appendix D Dimension drawings

D.1 Keypad structure

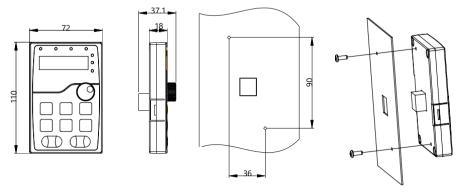
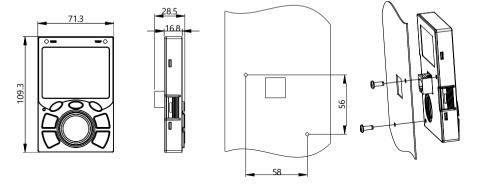
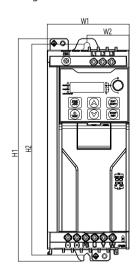




Figure D-2 LCD keypad structure (unit: mm)

D.2 Product outline dimensions

Figure D-3 Dimensions and hole distances for VFDs in frames A and B

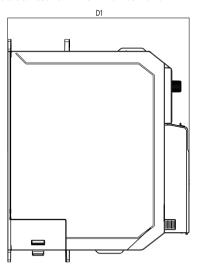
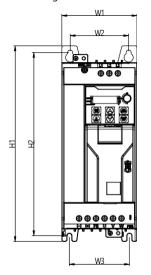



Table D-1 Dimensions and hole distances for VFDs in frames A and B (unit: mm)

Product model	Frame	Outlin	ie dimen	sions	Mounti hole	Mounting hole	
		W1	H1	D1	W2	H2	diameter
DRV-240-0R2G-S2		60	190	155	36	180	Ø5
DRV-240-0R4G-S2		60	190	155	36	180	Ø5
DRV-240-0R7G-S2		60	190	155	36	180	Ø5
DRV-240-0R2G-2		60	190	155	36	180	Ø5
DRV-240-0R4G-2	Α	60	190	155	36	180	Ø5
DRV-240-0R7G-2		60	190	155	36	180	Ø5
DRV-240-0R4G-4		60	190	155	36	180	Ø5
DRV-240-0R7G-4		60	190	155	36	180	Ø5
DRV-240-1R1G-4		60	190	155	36	180	Ø5
DRV-240-1R1G-S2		70	190	155	36	180	Ø5
DRV-240-1R5G-S2		70	190	155	36	180	Ø5
DRV-240-2R2G-S2	В	70	190	155	36	180	Ø5
DRV-240-1R1G-2		70	190	155	36	180	Ø5
DRV-240-1R5G-2		70	190	155	36	180	Ø5
DRV-240-2R2G-2		70	190	155	36	180	Ø5

Product model	Frame	Outlin	e dimen	sions	Mounti hole	Mounting hole	
		W1	H1	D1	W2	H2	diameter
DRV-240-1R5G-4		70	190	155	36	180	Ø5
DRV-240-2R2G-4	В	70	190	155	36	180	Ø5
DRV-240-003G-4		70	190	155	36	180	Ø5
DRV-240-004G-4		70	190	155	36	180	Ø5

Figure D-4 Dimensions and hole distances for VFDs in frame C

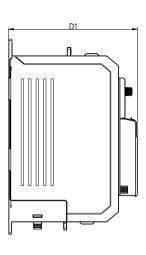


Table D-2 Dimensions and hole distances for VFDs in frame C (unit: mm)

Product model	Frame	Outlin	ne dime	nsions	Mou F	Mounting hole		
		W1	H1	D1	W2	W3	H2	diameter
DRV-240-004G-S2		90	235	155	70	72	220	Ø6
DRV-240-004G-2		90	235	155	70	72	220	Ø6
DRV-240-5R5G-2	С	90	235	155	70	72	220	Ø6
DRV-240-5R5G-4		90	235	155	70	72	220	Ø6
DRV-240-7R5G-4		90	235	155	70	72	220	Ø6

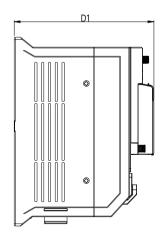


Table D-3 Dimensions and hole distances for VFDs in frame D (unit: mm)

Product model	Frame	Outli	ne dimer	nsions	Mount hole	Mounting hole	
		W1	H1	D1	W2	H2	diameter
DRV-240-7R5G-2	D	130	250	185	100	237	Ø6
DRV-240-011G-2		130	250	185	100	237	Ø6
DRV-240-011G-4		130	250	185	100	237	Ø6
DRV-240-015G-4		130	250	185	100	237	Ø6

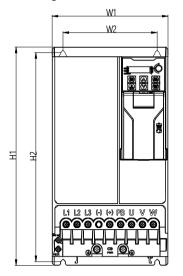


Figure D-6 Dimensions and hole distances for VFDs in frame E

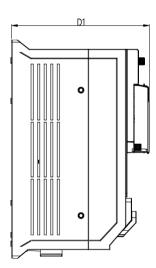


Table D-4 Dimensions and hole distances for VFDs in frame E (unit: mm)

Product model	Frame	Outlir	ne dime	nsions	Mount hole	Mounting hole	
		W1	H1	D1	W2	H2	diameter
DRV-240-015G-2		160	300	190	130	287	Ø6
DRV-240-018G-4	E	160	300	190	130	287	Ø6
DRV-240-022G-4		160	300	190	130	287	Ø6

D.3 Flange mounting dimensions

Figure D-7 Dimensions and hole distances for VFDs in frame C

_

Table D-5 Flange mounting dimensions for VFDs in frame C (unit: mm)

		_		_								
Product model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Hole diameter	Screw
DRV-240-	130	112	93	10	265	170	255	29	155	75	Ø6	M5
DRV-240-	130	112	93	10	265	170	255	29	155	75	Ø6	M5
DRV-240-	130	112	93	10	265	170	255	29	155	75	Ø6	M5
DRV-240-	130	112	93	10	265	170	255	29	155	75	Ø6	M5
DRV-240-	130	112	93	10	265	170	255	29	155	75	Ø6	M5

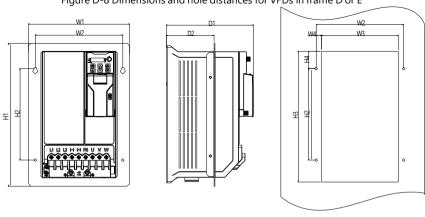


Figure D-8 Dimensions and hole distances for VFDs in frame D or E

Table D-6 Flange mounting dimensions for VFDs in frame D (unit: mm)

Product model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Hole diamete	Screw
DRV-240-7R5G-	190	170	150	10	275	170	252	50	185	105	Ø6	M5
DRV-240-011G-	190	170	150	10	275	170	252	50	185	105	Ø6	M5
DRV-240-011G-	190	170	150	10	275	170	252	50	185	105	Ø6	M5
DRV-240-015G-	190	170	150	10	275	170	252	50	185	105	Ø6	M5

Table D-7 Flange mounting dimensions for VFDs in frame E (unit: mm)

Product model	W1	W2	W3	W4	H1	H2	Н3	H4	D1	D2	Hole diamete	Screw
DRV-240-015G-	220	200	180	10	325	200	302	50	190	105	Ø6	M5
DRV-240-018G-	220	200	180	10	325	200	302	50	190	105	Ø6	M5
DRV-240-022G-	220	200	180	10	325	200	302	50	190	105	Ø6	M5

Appendix E Peripheral

E.1 Cable

Cables mainly include power cables and control cables. For the selection of cable types, see the following table.

Cable type		Symmetrical shielded cable	Four- core	Double- shielded twisted-pair	Single- shielded twisted-pair	
Power	Input power cable	✓	-	-	-	
cable	Motor cable	✓	-	-	-	
	Analog signal			,		
Control	control cable	-	-	V	-	
cable	Digital signal			,	✓	
	control cable	-	-	V		

E.1.1 Power

Table E-1 Cable selection

	L1, L2, L3/U, \	/, W, PB, (+), (-)	P	E	
VED d.1	Recommended	Recommende	Recommended	Recommende	Fastening
VFD model	cable size	d connection	cablesize	d connection	torque
	(AWG/mm²)	terminal	(AWG/mm²)	terminal	(N · m)
AC 1PH 200V-2	40V				
DRV-240-0R2G-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-0R4G-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-0R7G-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-1R1G-	13/2.5	GTVE25012	13/2.0	TVR2-4	0.8
DRV-240-1R5G-	11/4	GTVE40012	11/4	TVR3.5-4	0.8
DRV-240-2R2G-	9/6	GTVE60012	9/6	TVR3.5-4	0.8
DRV-240-004G-	7/10	GTVE100012	7/10	TNR8-5	1.2
AC 3PH 200V-2	40V				
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	13/2.5	GTVE25012	13/2.5	TVR2-4	0.8
DRV-240-	11/4	GTVE40012	11/4	TVR3.5-4	0.8

	L1, L2, L3/U, V	V, W, PB, (+), (-)	P	E	
VFD model	Recommended cable size (AWG/mm²)		Recommended cable size (AWG/mm²)	Recommende d connection terminal	Fastening torque (N · m)
DRV-240-	9/6	GTVE60012	9/6	TVR3.5-4	1.2
DRV-240-	7/10	GTVE100012	7/10	TNR8-5	1.2
DRV-240-	5/16	GTVE160012	5/16	TNR14-5	2
DRV-240-	3/25	GTVE250016	5/16	TNR14-5	2
DRV-240-	2/35	GTVE350016	5/16	TNR22-6	2
AC 3PH 380V-4	80V				
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	15/1.5	GTVE15010	15/1.5	TVR2-4	0.8
DRV-240-	13/2.5	GTVE25012	13/2.5	TVR2-4	0.8
DRV-240-	11/4	GTVE40012	11/4	TVR3.5-4	0.8
DRV-240-	9/6	GTVE60012	9/6	TVR3.5-4	1.2
DRV-240-	7/10	GTVE100012	7/10	TNR8-5	1.2
DRV-240-	5/16	GTVE160012	5/16	TNR14-5	2
DRV-240-	5/16	GTVE60012	5/16	TNR14-5	2
DRV-240-	3/25	GTVE250012	5/16	TNR14-5	2
DRV-240-	2/35	GTVE350016	5/16	TNR22-6	2

Note: The cables recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 50°C, the wiring distance is shorter than 100m, and the current is the rated current.

Crimp terminal selection

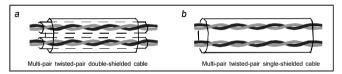
Due to reasons such as longer cable length or laying, it is necessary to increase the cross-sectional area of the cable and replace the corresponding matching terminal blocks (wire lugs).

GTVE tubular pre-insulated terminal reference brand: Suzhou Yuanli

TVR circular pre-insulated terminal reference brand: Suzhou Yuanli

TNR circular bare terminal reference brand: Suzhou Yuanli

The terminal models vary by brand, and the manufacturer's model specifications shall prevail.


The terminals of DBV models are not recommended.

E.1.2 Control cable

Control cables mainly include analog signal control cables and digital signal control cables. Analog signal control cables use twisted double shielded cables (Figure a), with a separate shielded twisted pair for each signal and different ground wires for different analog signals. For digital signals, a double-shielded cable is preferred, but single-shielded or unshielded twisted pairs can also be used (Figure b).

Figure E-4 Control cable routing

✓ Note:

- Independent shielded cables must be used as analog signal cables and communication cables.
- The same cable cannot transmit 24V DC signals and 115/230V AC signals simultaneously.
- For frequency signals, only shielded cables can be used.
- A relay cable needs to carry the metal braided shield layer.
- For control cable wiring terminals, refer to the GTVE wiring terminal description in the wire lug model selection section.

E.2 Breaker, fuse, and electromagnetic contactor

The circuit breaker is mainly used to prevent electric shock accidents and short circuits to the ground that may cause leakage current fire. The electromagnetic contactor is mainly used to control the main circuit power on and off, which can effectively cut off the input power of the VFD in case of system failure to ensure safety.

Table E-2 Model selection of breaker, fuse, and electromagnetic contactor

VFD model	Braker (A)	Fuse (A)	Contactor rated
AC 1PH 200V-240V			
DRV-240-0R2G-S2	6	8	9
DRV-240-0R4G-S2	10	16	9
DRV-240-0R7G-S2	16	25	12
DRV-240-1R1G-S2	20	25	18
DRV-240-1R5G-S2	25	32	25
DRV-240-2R2G-S2	32	40	32
DRV-240-004G-S2	40	50	38
AC 3PH 200V-240V			
DRV-240-0R2G-2	6	6	9
DRV-240-0R4G-2	6	8	9
DRV-240-0R7G-2	10	16	9
DRV-240-1R1G-2	16	20	12
DRV-240-1R5G-2	20	25	18
DRV-240-2R2G-2	25	32	25
DRV-240-004G-2	40	40	32
DRV-240-5R5G-2	50	50	40
DRV-240-7R5G-2	63	80	65
DRV-240-011G-2	80	100	65
DRV-240-015G-2	100	125	95
AC 3PH 380V-480V			
DRV-240-0R4G-4	6	6	9
DRV-240-0R7G-4	10	8	9
DRV-240-1R1G-4	10	10	9
DRV-240-1R5G-4	16	16	12
DRV-240-2R2G-4	16	16	12
DRV-240-003G-4	20	25	18
DRV-240-004G-4	20	25	18
DRV-240-5R5G-4	32	40	32

VFD model	Braker (A)	Fuse (A)	Contactor rated
DRV-240-7R5G-4	40	50	32
DRV-240-011G-4	50	63	50
DRV-240-015G-4	63	80	65
DRV-240-018G-4	80	100	65
DRV-240-022G-4	100	125	95

Note: The accessory specifications described in the preceding table are ideal values.
You can select accessories based on the site conditions, but try not to use those with lower values.

E.3 Optional accessories

Reactors, filters, braking components, and mounting brackets are external accessories and need to be specifically specified when purchasing.

F.3.1 Reactor

An input reactor is used to improve the power factor on the input side of the VFD, and thus restrict high-order harmonic currents.

An output reactor is used to extend the effective transmission distance of the VFD and effectively suppress instantaneous high voltage generated when the IGBT module of the VFD switches

Due to parasitic capacitance between the long cable and ground, the leakage current is large and the overcurrent protection of the VFD may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. For the length of the cable between the VFD and the motor, see appendix B.5.1 Motor cable length for normal operation. If the length exceeds the limit, see the following table for selection; if the length exceeds twice the limit, consult us directly.

Table E-3 Reactor model selection

VFD power	Input reactor	Output reactor
AC 1PH 200V-240V		
0.2kW	-	AS20DLU4005-CU
0.4kW	-	AS20DLU4005-CU
0.75kW	-	AS20DLU4005-CU
1.1kW	-	AS20DLU4010-CU
1.5kW	-	AS20DLU4010-CU
2.2kW	-	AS20DLU4014-CU

VFD power	Input reactor	Output reactor
4kW	-	AS20DLU4020-CU
AC 3PH 200V-240V		
0.2kW	AS20DLI4005-CU	AS20DLU4005-CU
0.4kW	AS20DLI4006-CU	AS20DLU4005-CU
0.75kW	AS20DLI4014-CU	AS20DLU4005-CU
1.1kW	AS20DLI4014-CU	AS20DLU4010-CU
1.5kW	AS20DLI4014-CU	AS20DLU4010-CU
2.2kW	AS20DLI4014-CU	AS20DLU4020-CU
4kW	AS20DLI4025-CU	AS20DLU4020-CU
5.5kW	AS20DLI4032-CU	AS20DLU4032-CU
7.5kW	AS20DLI4040-CU	AS20DLU4040-CU
11kW	AS20DLI4051-AL	AS20DLU4050-AL
15kW	AS20DLI4090-AL	AS20DLU4075-AL
AC 3PH 380V-480V		
0.4kW	AS20DLI4005-CU	AS20DLU4005-CU
0.75kW	AS20DLI4006-CU	AS20DLU4005-CU
1.1kW	AS20DLI4006-CU	AS20DLU4005-CU
1.5kW	AS20DLI4014-CU	AS20DLU4006-CU
2.2kW	AS20DLI4014-CU	AS20DLU4010-CU
3kW	AS20DLI4014-CU	AS20DLU4010-CU
4kW	AS20DLI4032-CU	AS20DLU4014-CU
5.5kW	AS20DLI4032-CU	AS20DLU4020-CU
7.5kW	AS20DLI4032-CU	AS20DLU4020-CU
11kW	AS20DLI4051-AL	AS20DLU4035-AL
15kW	AS20DLI4051-AL	AS20DLU4040-AL
18kW	AS20DLI4070-AL	AS20DLU4050-AL
22kW	AS20DLI4070-AL	AS20DLU4060-AL

✓Note:

- The rated input voltage drop of input reactor is designed to \geq 1.5%.
- The rated output voltage drop of output reactor is designed to 1%.
- For the selection of accessories with different material requirements than those listed above, please refer to the low-voltage VFD DRV series filter option brochure.

E.3.2 Filter

A filter is used to prevent the surrounding interference and prevent the interference from the VFD during running Optional filters can be used to meet the conductivity and

transmission requirements of CE/EN 61800-3 C2 electrical drive systems.

Table E-4 Filter model selection

VFD power	Input filter	Output filter
AC 1PH 200V-240V	•	<u> </u>
0.2kW	AS20FLI2010	AS20FLU4006
0.4kW	AS20FLI2010	AS20FLU4006
0.75kW	AS20FLI2010	AS20FLU4006
1.1kW	AS20FLI2025	AS20FLU4016
1.5kW	AS20FLI2025	AS20FLU4016
2.2kW	AS20FLI2025	AS20FLU4016
4kW	AS20FLI2025	AS20FLU4016
AC 3PH 200V-240V		
0.2kW	AS20FLI4006	AS20FLU4006
0.4kW	AS20FLI4006	AS20FLU4006
0.75kW	AS20FLI4016	AS20FLU4006
1.1kW	AS20FLI4016	AS20FLU4016
1.5kW	AS20FLI4016	AS20FLU4016
2.2kW	AS20FLI4016	AS20FLU4016
4kW	AS20FLI4032	AS20FLU4032
5.5kW	AS20FLI4032	AS20FLU4032
7.5kW	AS20FLI4045	AS20FLU4045
11kW	AS20FLI4045	AS20FLU4045
15kW	AS20FLI4100	AS20FLU4065
AC 3PH 380V-480V		
0.4kW	AS20FLI4006	AS20FLU4006
0.75kW	AS20FLI4006	AS20FLU4006
1.1kW	AS20FLI4006	AS20FLU4006
1.5kW	AS20FLI4016	AS20FLU4006
2.2kW	AS20FLI4016	AS20FLU4006
3kW	AS20FLI4016	AS20FLU4016
4kW	AS20FLI4016	AS20FLU4016
5.5kW	AS20FLI4032	AS20FLU4032
7.5kW	AS20FLI4032	AS20FLU4032
11kW	AS20FLI4045	AS20FLU4032
15kW	AS20FLI4065	AS20FLU4045
18kW	AS20FLI4065	AS20FLU4045
22kW	AS20FLI4065	AS20FLU4065

E.3.3 Braking component

The braking component includes braking resistors and braking units, which can be used to dissipate the regenerative energy generated by the motor, greatly improving braking and deceleration capabilities. When the VFD driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the VFD, causing the bus voltage of the VFD to rise. If the bus voltage exceeds a specific value, the VFD reports an overvoltage fault. To prevent this from happening, you need to configure braking components.

Table E-5 Braking component model selection

Tuble 2. 3 Braking component model selection							
		Resistance	Braking res	istor power dis	sipation (kW)	Min.	
VFD power	Braking unit	braking	6 braking ratio	6 braking ratio	6 braking ratio	allowed braking resistanc	
		torque (Ω)				e (Ω)	
AC 1PH 2	00V-240V						
0.2kW		750	0.03	0.15	0.24	380	
0.4kW		361	0.06	0.3	0.48	180	
0.75kW	Built-in	192	0.11	0.56	0.9	100	
1.1kW	braking	131	0.17	0.83	1.32	100	
1.5kW	unit	96	0.23	1.1	1.8	60	
2.2kW		65	0.33	1.7	2.64	39	
4kW		36	0.6	3	4.8	33	
AC 3PH 2	00V-240V						
0.2kW		750	0.03	0.15	0.24	380	
0.4kW		361	0.06	0.3	0.48	180	
0.75kW		192	0.11	0.56	0.9	100	
1.1kW		131	0.17	0.83	1.32	100	
1.5kW	Built-in	96	0.23	1.1	1.8	60	
2.2kW	braking	65	0.33	1.7	2.64	39	
4kW	unit	36	0.6	3	4.8	33	
5.5kW		26	0.8	4.13	6.6	25	
7.5kW		19	1.13	5.63	9	13	
11 kW		13	1.65	8.3	13.2	8.8	
15kW		9.6	2.3	11.3	18	6.4	

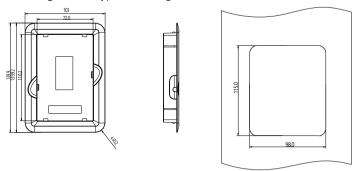
		Resistance	Braking res	istor power dis	sipation (kW)	Min.
VFD power	Braking unit	applicable for 100% braking torque (Ω)	6 braking ratio	6 braking ratio	6 braking ratio	allowed braking resistanc e (Ω)
AC 3PH 3	80V-480V	1				
0.4kW		750	0.08	0.4	0.7	380
0.75kW		653	0.11	0.56	0.9	200
1.1kW		440	0.16	0.8	1.3	150
1.5kW		326	0.23	1.13	1.8	150
2.2kW		222	0.33	1.65	2.64	130
3kW	Built-in	122	0.6	3	4.8	80
4kW	braking	122	0.6	3	4.8	80
5.5kW	unit	89	0.8	4.1	6.6	60
7.5kW		65	1.13	5.6	9	51
11kW		44	1.7	8.3	13.2	31
15kW		32	2	11.2	18	23
18.5kW		26	3	14	22	19
22kW		22	3.3	17	26	17

∠Note:

- Select braking resistors according to the resistance and power data provided by ASTOR.
- The braking resistor may increase the braking torque of the VFD. The preceding table describes the resistance and power for 100% braking torque, 10% braking ratio, 50% braking ratio and 80% braking ratio. You can select the braking system based on the

E.3.4 External keypad and mounting

E.3.4.1 External

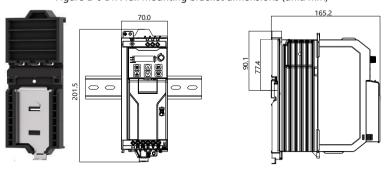


E.3.4.2 Keypad mounting bracket

All models support external keypads that are optional.

You can mount the external keypad on a bracket. There are two types of brackets that are compatible with all keypads. Keypad mounting brackets are optional. Figure E-5 show the outline dimensions.

Figure E-5 Keypad mounting bracket dimensions (unit: mm)



Name		Model	
	Keypad mounting bracket	AS28KIT0001	

E.3.5 DIN rail mounting bracket

When selecting the DIN rail mounting method for the VFDs in frames A and B, you must select rail mounting brackets.

Figure E-6 DIN rail mounting bracket dimensions (unit: mm)

Name	Model
DIN rail mounting bracket	AP-RB-A-01

E.3.6 Accessory

No.	Name	Model	Applicable frame	Appearance
1	Flange mounting bracket-C	AP-FG-C-01	С	
2	Flange mounting bracket-D	AP-FG-D-01	О	
3	Flange mounting bracket-E	AP-FG-E-01	Е	

Appendix F STO function

Before starting the STO function, read the following content in detail and follow all safety precautions in this manual.

F.1 Safety standards

The product has been integrated with the STO function and complies with the following safety standards.

	Electromagnetic compatibility (EMC)—Part 7: General
IEC 61000-6-7	standards—Immunity requirements for equipment used in industrial
	sites to perform safety related functions (functional safety)
	EMC requirements for measurement, control, and laboratory electrical
JEC (122(2 1	equipment—Part 31: Immunity requirements for safety related systems
IEC 61326-3-1	and equipment intended to perform safety related functions
	(functional safety)—General industrial applications
155 64500	Safety of machinery—Functional safety of safety-related control
IEC 61508	systems
JEG (EN G1000 E 0	Adjustable speed electrical power drive systems Part 5-2: Safety
IEC/EN 61800-5-2	requirements—Function
15.6.(51), 600.64	Safety of machinery—Safety-related functional safety of electrical,
IEC/EN 62061	electronic, and programmable electronic control systems
511//00 100 10 1	Safety of machinery—Safety related parts of control systems—Part 1:
EN/ISO 13849-1	General principles for design
511/1/20 10010 0	Safety of machinery—Safety related parts of control systems—Part 2:
EN/ISO 13849-2	Verification

Safety standard related data is as follows.

Code Definition		Standard	Characteristics
CII	Cafata intermita laval	IEC 61508	CILO
SIL	IL Safety integrity level	IEC 62061	SIL3
PFH Probability of failure per hour		IEC 61508	8.53x10 ⁻¹⁰
HFT Hardware fault tolerance		IEC 61508	1
SFF	Safe failure fraction	IEC 61508	99.39%
DC	Diagnosis coverage	ISO 13849-1	Greater than 90%
Cat.	Category	ISO 13849-1	3

F.2 Safety function description

■ STO function principle description

The Safe Torque Off (STO) function turns off the drive output by shutting down the drive signal, cutting off the electrical power supply to the motor and thus stopping the outward torque output (see Figure F-2). When STO is activated, this function prevents the motor from accidentally starting if the motor is in static state. If the motor is rotating, it will continue to rotate by inertia until it comes to rest. If the motor has a brake, the brake closes immediately.

✓Note:

- In normal working mode, you are not recommended to use the STO function to stop the VFD running. The STO function cannot effectively prevent sabotage or misuse. If the STO function is used to stop a running VFD, the VFD will disconnect the power supply to the motor, and the motor will coast to stop. If the consequences caused by this action are unacceptable, related stop modes should be used to stop the VFD and mechanical equipment.
- When using a permanent magnet, reluctance, or nonsalient pole induction motor, even if the STO function is activated, there is still a possible failure mode (although the possibility is very low) that prevents the two power devices of the VFD from conducting. The drive system can output a uniform torque, which can rotate the permanent magnet motor shaft by a maximum electrical angle of 180°, or the non-salient pole induction motor or reluctance motor shaft by an electrical angle of 90°. This possible failure mode must be allowed during the design of the machine system. Maximum motor shaft rotation angle = Electrical angle of 360°/Number of motor pole pairs
- The STO function cannot replace the emergency stop function. When no other
 measures are taken, the power supply of the VFD cannot be cut off in an emergency.
- The STO function has priority over all other functions of the VFD.
- Although the STO function can reduce known hazardous conditions, it does not eliminate all potential hazards.
- Designing safety related systems requires professional safety knowledge. To ensure
 the safety of a complete control system, design the system according to the required
 safety principles. A single subsystem with the STO function, although intentionally
 designed for safety related applications, it cannot guarantee the safety of the entire
 system.

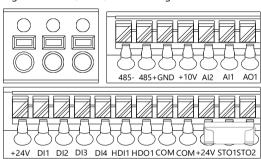
Emergency stop function

When the emergency stop function is used in equipment, it mainly allows operators to take timely actions to prevent accidents in unexpected conditions. Its design may not necessarily be complex or intelligent, but it may use simple electromechanical devices to initiate a controlled rapid stop by cutting off the power supply or other means (such as dynamic or regenerative braking).

F.3 Risk assessment

- 1. Before using the STO function, a risk assessment needs to be conducted on the drive system to ensure compliance with the required safety standards.
- There may also be some other risks when the device is operating with safety functions. Therefore, safety must always be considered when conducting risk assessments
- 3. If an external force (such as vertical axis gravity) is applied while the safety function is in operation, the motor will rotate. Providing a separate mechanical brake is an effective solution
- 4. If the drive fails, and the motor can operate within a 180° range, safety will still be ensured even in dangerous situations.

Note: The max. rotation angle of the rotating motor's shaft is 1/6 of a full turn, while the max. rotation angle of the driven motor's shaft is 1/20 of a full turn. The max. travel distance of the linear servo motor is 30mm.


F.4 STO wiring

In the factory, the STO function terminals +24V, STO1, and STO2 have been shorted.

The wiring requirements are as follows:

- 1. When using the STO function of the VFD, remove the jumpers between +24V, STO1, and STO1
- 2. When the VFD is in normal operation, close the switches or relays.

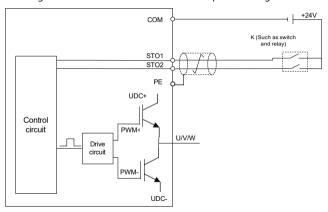
Figure F-1 +24V/STO1/STO2 shorting connection

K (Such as switch and relay)

STO1
STO2

PE
UDC+

UDC+


UN/W

circuit

UN/W

Figure F-2 STO function circuit internal power wiring

Figure F-3 STO function circuit external power wiring

✓ Note:

- The symbol "K" in the preceding figures can represent components such as manual operation switch, emergency stop switch, safety relay, and safety PLC contact.
- The opening or closing of safety switch contact must be within 200ms.
- The maximum length of the double-shielded twisted pair cable between the VFD and safety switch is 25m.
- The cable shield layer should be connected to the PE terminal of the VFD.
- When the STO function is enabled, the switch or relay is opened. If the VFD stops output, the keypad displays "E40".

F.5 STO function terminal description

STO function terminals are listed in the following table.

Termina l	Function
+24V	Voltage range: 24V±15%
	To disable the STO function, short +24V/STO1/STO2.
STO1	Voltage in STO action mode: 0V < STO1 and STO2 < 5V
	Voltage in STO cut-off mode: 13V < STO1 and STO2 < 30V
STO2	Input current: 5mA
	STO function channel signal input

F.6 STO function logic table

The function logics of STO1 and STO2 and keypad display are listed in the following table.

STO1	STO2	VFD status	Keypad display	Fault description
CTO1 alarad	CTO2 deced	Name I was in a	No exception	
STO1 closed	STO2 closed	Normal running	displayed	-
STO1 open	STO2 open	Torque output off	E40	Safe torque off (STO)
STO1 open	STO2 closed	Torque output off	E41	STO1 exception
STO1 closed	STO2 open	Torque output off	E42	STO2 exception

[△]Note: E43 indicates both STO1 and STO2 are abnormal.

F.7 STO channel delay description

The following table describes the trigger and indication delay of the STO channels.

Table F-1 lists the STO channel trigger and indication delay

STO mode	STO trigger delay ¹ and STO indication delay ²	
STO fault: E41	Trigger delay < 10ms	
STO fault: E41	Indication delay < 280ms	
CTO (lv. 542	Trigger delay < 10ms	
STO fault: E42	Indication delay < 280ms	
CTO (lv. 542	Trigger delay < 10ms	
STO fault: E43	Indication delay < 280ms	
CTO (1, 540	Trigger delay < 10ms	
STO fault: E40	Indication delay < 100ms	

STO trigger delay¹: Time interval between trigger the STO function and switching off the

drive output

STO instruction delay²: Time interval between triggering the STO function and indicating STO output status

F.8 Acceptance test

Warning

 Technical personnel, operators, maintenance and repair personnel must receive relevant training to understand the requirements and principles of safety system design and debugging.

- Do not carry out maintenance on the VFD or motor before the power is cut off; otherwise, there may be a risk of electric shock or other electricity generated hazards.
- The safety function acceptance test must be carried out by personnel with professional safety function knowledge, and must be recorded and signed by test engineers.

The acceptance test must be carried for the device in the following stages:

- 1. First starting of safety functions
- 2. After any safety function related change (including PCB, wiring, component, or setup)
- 3. After any safety function related maintenance work

The signed acceptance test report must be kept in machine logs. The report should include the documents of startup activities and test results, fault report references and fault solutions. Any new acceptance test conducted due to changes or maintenance should be recorded in the logs.

■ Acceptance test checklist

Step	Test	Result
1	Ensure that the VFD can run or stop randomly during commissioning.	
2	Stop the VFD (if it is running), disconnect the input power supply, and	
2	isolate the drive from the power cable through the isolation switch.	
2	Check the STO function circuit connection according to the circuit	
3	diagram.	
	Close the isolation switch to connect to the power.	
	Test the STO function as follows when the motor stops:	
	If the VFD is running, send a stop command to it and wait until the motor	
4	shaft stops rotating.	
	Disconnect the STO circuit. Then the VFD should enter the safe torque off	
	mode and stop outputting voltage, and the keypad displays "E40".	
	Send a VFD startup command, but the motor does not start.	

Step	Test	Result
	Close the STO circuit.	
	Remove the fault, start the VFD, and ensure that the motor can run	
	properly.	
	Test the STO function as follows when the motor is running:	
	Start the VFD and ensure that the motor runs.	
	Disconnect the STO circuit. Then the VFD should enter the safe torque off	
	mode and stop outputting voltage, and the keypad displays "E40". The	
	motor should stop.	
	Remove the fault, start the VFD, and ensure that the motor keeps the	
	static state.	
	Close the STO circuit.	
	Remove the fault, start the VFD, and ensure that the motor can run	
	properly.	
	Test and detect the VFD fault. At this time, the motor can be in running or	
	stopped state.	
	Start the VFD and ensure that the motor runs properly.	
	Disconnect STO1 and keep STO2 closed. If the motor is running, it should	
	coast to stop, and the keypad displays "E41".	
	Send a VFD startup command, but the motor does not start.	
	Close the STO circuit.	
5	At this time, the fault cannot be removed. Power off and restart the VFD,	
	and ensure that the motor can run properly.	
	Disconnect STO2 and keep STO1 closed. If the motor is running, it should	
	coast to stop, and the keypad displays "E42".	
	Send a VFD startup command, but the motor does not start.	
	Close the STO circuit.	
	At this time, the fault cannot be removed. Power off and restart the VFD,	
	and ensure that the motor can run properly.	
6	Record and sign the acceptance test report, which indicates the STO	
	function is safe and can be put into service.	

✓Note:

- If the steps in the acceptance test checklist can be carried out normally without other
 exceptions, it indicates that the STO functional circuit is normal. If the situations are
 different from the expected results of the preceding steps or if "E43" is displayed, it
 indicates that the STO function circuit is abnormal. For details about fault handling,
 see section 8.2 Faults and solutions.
- Fault "E40" can also be manually or automatically reset by setting P08.55.

VFD fault	Fault code	Response time	Reset method
Normal running	No exception displayed	-	-
Torque output off	E40	≤20ms	Press STOP/RST.
Torque output off	E41	≤20ms	Entire machine re-powered on
Torque output off	E42	≤20ms	Entire machine re-powered on

Appendix G Function parameter list

The function parameters of the VFD are divided into groups by function. Among the function parameter groups, group P98 is the analog input and output calibration group, while group P99 contains the factory function parameters, which are user inaccessible. Each group includes several function codes (each function code identifies a function parameter). A three-level menu style is applied to function codes. For example, "P08.08" indicates the 8th function code in group P08. The VFD supplies the password protection function. For detail settings, see P07.00. The parameters adopt the decimal system (0–9) and hexadecimal system (0–F). If the hexadecimal system is adopted, all bits are mutually independent on data during parameter editing. The symbols in the table are described as follows:

- "O" indicates that the value of the parameter can be modified when the VFD is in stopped or running state.
- "©" indicates that the value of the parameter cannot be modified when the VFD is in running state.
- "•" indicates that the value of the parameter is detected and recorded, and cannot be modified. (When "Restore factory settings" is performed, the actual detected parameter values or recorded values will not be restored.)

Group P00—Basic functions

Functio n	Name	Description	Default	Modify
P00.00	Speed control mode	Specifies a speed control mode. Setting range: 0–2 0: SVC mode 0 1: SVC mode 1 2: Space voltage vector control mode Note: Before using a vector control mode (0 or 1), enable the VFD to perform motor parameter autotuning first.	2	0
P00.01	Channel of running commands	Specifies a channel of running commands. Setting range: 0–2 0: Keypad 1: Terminal 2: Communication	0	0

Functio				
n	Name	Description	Default	Modify
		The function code is used to select a communication mode of running commands.		
	Communicat	Setting range: 0–6 0: Modbus/Modbus TCP communication 1: Reserved 2: Ethernet		
P00.02	ion mode of running commands	2: Etherret 3: EtherCAT/PROFINET/EtherNet IP 4–6: Reserved ✓ Note: The Modbus TCP communication	0	0
		mode of option 0, and options 2 and 3 are extended functions, which are valid only when corresponding expansion cards are configured.		
P00.03	Max. output frequency	Specifies the max. output frequency of the VFD, which is the basis of the frequency setting and the acceleration (ACC) and deceleration (DEC) speed. Setting range: P00.04–599.00Hz	50.00Hz	0
P00.04	Upper limit of running frequency	Specifies the upper limit of the VFD output frequency, which should be smaller than or equal to the max. output frequency. If the set frequency is higher than the upper limit of the running frequency, the upper limit of the running frequency is used for running. Setting range: P00.05–P00.03 (Hz)	50.00Hz	0
P00.05	Lower limit of running frequency	Specifies the lower limit of the VFD output frequency. If the set frequency is lower than the lower limit of the running frequency, the lower limit of the running frequency is used for running. Setting range: 0.00Hz–P00.04 Note: Max. output frequency ≥ Upper limit of frequency ≥ Lower limit of frequency	0.00Hz	0
P00.06	Setting channel of A frequency command	Specifies the frequency command source. Setting range: 0–15 0: P00.10 1: Al1	0	0

Functio n	Name	Description	Default	Modify
P00.07	Setting channel of B frequency command	2: AI2 3: AI3 4: Reserved 5: High-speed pulse HDI1 6: Reserved 7: Simple PLC program 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication	1	0
P00.08	Reference object of B frequency command	15: Reserved Specifies the reference object of B frequency command. Setting range: 0–1 0: Max. output frequency 1: A frequency command	0	0
P00.09	Combination mode of setting source	Specifies the combination mode of A/B frequency setting source. Setting range: 0–5 0: A 1: B 2: (A+B) 3: (A-B) 4: Max(A, B) 5: Min(A, B)	0	0
P00.10	Setting frequency through keypad	Specifies the initial VFD frequency set value when A and B frequency commands are set by keypad. Setting range: 0.00Hz–P00.03	50.00Hz	0
P00.11	ACC time 1	Specifies the ACC time of ramp frequency. Setting range: 0.0–3600.0s	Model depended	0
P00.12	DEC time 1	Specifies the DEC time of ramp frequency. Setting range: 0.0–3600.0s	Model depended	0

Functio n	Name	Description	Default	Modify
P00.13	Running direction	Specifies the running direction. Setting range: 0–2 0: Run at the default direction. 1: Run at the opposite direction. 2: Disable reverse running.	0	0
P00.14	Carrier frequency setting	Specifies the carrier frequency. A high carrier frequency will have an ideal current waveform, few current harmonics, and small motor noise, but it will increase the switch loss, increase VFD temperature, and impact the output capacity. At the same time, the VFD current leakage and electrical magnetic interference will increase. On the contrary, an extremely-low a carrier frequency may cause unstable operation at low frequency, decrease the torque, or even lead to oscillation. The carrier frequency has been properly set in the factory before the VFD is delivered. In general, you do not need to modify it. The mapping between VFD models and default carrier frequency values is as follows: 8k for 220V 5.5kW and lower 4k for other models Setting range: 1.0kHz–15.0kHz Note: When the frequency used exceeds the default carrier frequency, the VFD needs to derate by 10% for each increased of 1kHz.	Model depended	0
P00.15	Motor parameter autotuning	Specifies the motor autotuning function. Setting range: 0–3 0: No operation 1: Complete parameter rotary autotuning 2: Complete parameter static autotuning 3: Partial parameter static autotuning	0	©
P00.16	AVR function	Specifies the VFD automatic voltage regulation (AVR) function, which can eliminate the impact of the bus voltage fluctuation on the VFD output voltage.	1	0

Functio n	Name	Description	Default	Modify
		Setting range: 0–1		
		0: Invalid		
		1: Valid during the whole process		
		Specifies the VFD type.		
		Setting range: 0–3		
P00.17	VED time	0–1: Reserved	2	Modify
P00.17	VFD type	2: Heavy duty	2	
		3: Light duty		
		Note: Invalid when the value is 0 or 1.		
		Specifies the function parameter restoration.		
		Setting range: 0–6		
		0: No operation		
		1: Restore to default values (excluding motor		
		parameters)		
		2: Clear fault records		
		3: Lock all function codes		
	Function	4: Reserved		
P00.18	parameter	5: Restore to default values (factory test mode)	0	0
	restoration	6: Restore to default values (including motor		
		parameters)		
		△Note: Restoring to default values will delete		
		the user password. After the selected		
		operation is performed, the function code is		
		automatically restored to 0. When it is set to 3		
		(Lock all function codes), the value of any		
		function code cannot be modified.		

Group P01—Start and stop

Functio n	Name	Description	Default	Modify
P01.00	Running mode of start	Specifies the start mode. Setting range: 0–4 0: Direct start 1: Start after DC braking 2–3: Reserved 4: Start after speed tracking (software)	0	0

Functio n	Name	Description	Default	Modify
P01.01	Starting frequency of direct start	Specifies the initial frequency during VFD start. Setting range: 0.00Hz–P00.03	0.50Hz	0
P01.02	Starting frequency hold time	Specifies the hold time of starting frequency. Setting range: 0.0–50.0s	0.0s	0
P01.03	Braking current before start	Specifies the DC braking current before startup. Setting range: 0.0–100.0%	0.0%	0
P01.04	Braking time before start	Specifies the DC braking time before startup. Setting range: 0.00–50.00s	0.00s	0
P01.05	ACC/DEC mode	Specifies the changing mode of the frequency during start and running. Setting range: 0–1 0: Linear type. The output frequency increases or decreases linearly. 1: S curve. The output frequency increases or decreases according to the S curve. Note: The S curve is generally applied to application scenarios where smoother start or stop is required. When the S curve mode is selected, P01.06, P01.07, P01.27, and P01.28 need to be set accordingly.	0	©
P01.06	Time of starting segment of ACC S curve	Specifies the time of the starting segment of the ACC S curve. It works with P01.07 to determine the curvature of the S curve. Setting range: 0.0–50.0s	0.1s	0
P01.07	Time of ending segment of ACC S curve	Specifies the time of the ending segment of the ACC S curve. It works with P01.06 to determine the curvature of the S curve. Setting range: 0.0–50.0s	0.1s	0
P01.08	Stop mode	Specifies the stop mode. Setting range: 0–1 0: Decelerate to stop. After a stop command takes effect, the VFD lowers output frequency based on the DEC mode and the defined DEC time; after the frequency drops to the stop	0	0

Functio n	Name	Description	Default	Modify
		speed (P01.15), the VFD stops. 1: Coast to stop. After a stop command takes		
		effect, the VFD ceases the output immediately, and the load coasts to stop according to mechanical inertia.		
P01.09	Starting frequency of braking for stop	Specifies the starting frequency of DC braking for stop. Setting range: 0.00Hz–P00.03	0.00Hz	0
P01.10	Demagnetiz ation time	Specifies the demagnetization time, that is, the wait time before DC braking for stop. Setting range: 0.00–30.00s	0.00s	0
P01.11	DC braking current for stop	Specifies the DC braking current for stop, that is, the DC braking energy. Setting range: 0.0–100.0% (of the rated VFD output current)	0.0%	0
P01.12	DC braking time for stop	Specifies the duration of DC braking. Setting range: 0.00–50.00s Note: If the value is 0, DC braking is invalid, and the VFD decelerates to stop within the specified time.	0.00s	0
P01.13	FWD/REV run deadzone time	Specifies the transition time of the switching in FWD/REV running switching mode specified by P01.14. Setting range: 0.0–3600.0s	0.0s	0
P01.14	FWD/REV run switching mode	Specifies the forward/reverse running switching mode. Setting range: 0–2 0: Switch at zero frequency 1: Switch at the starting frequency 2: Switch after the speed reaches the stop speed with a delay	1	©
P01.15	Stop speed	Specifies the stop speed (frequency). Setting range: 0.00Hz–P00.03	0.50Hz	0
P01.16	Stop speed detection mode	Specifies the stop speed detection mode. The VFD stops when the value in the selected mode is less than P01.15.	1	0

Functio n	Name	Description	Default	Modify
		Setting range: 0–1 0: Detect according to speed setting 1: Detect according to speed feedback Note: Only "Detect according to speed setting" is valid in space voltage vector control mode.		
P01.17	Stop speed detection time	Specifies the stop speed detection time. Setting range: 0.00–100.00s	0.00s	0
P01.18		Specifies whether the terminal running command is valid at power-on. Setting range: 0–1 0: The terminal running command is invalid at power-on. 1: The terminal running command is valid at power-on.	0	0
P01.19	Action selected when running frequency less than frequency lower limit	Specifies the run status of the VFD when the set frequency is below the lower limit. Setting range: 0x00–0x12 Ones place: Action selection 0: Run at the frequency lower limit 1: Stop 2: Sleep Tens place: Stop mode 0: Coast to stop 1: Decelerate to stop Note: Valid only when frequency lower limit is greater than 0.	0x00	©
P01.20	Wake-up-fro m-sleep delay	Specifies the wake-up-from-sleep delay time. Setting range: 0.0–3600.0s Note: Valid only when P01.19 ones place is 2.	0.0	0
P01.21	Power-off restart selection	Specifies whether the VFD automatically runs after re-power on. Setting range: 0–1 0: Disable 1: Enable. If the restart condition is met, the VFD will run automatically after waiting the	0	0

Functio n	Name	Description	Default	Modify
		time defined by P01.22.		
P01.22		Specifies the wait time before the automatic running of the VFD that is re- powered on. Setting range: 0.0–3600.0s Note: Valid only when P01.19 ones place is 2. Valid when P01.21 is 1.	1.0s	0
P01.23	Start delay time	Setting range: 0.0–600.0s	0.0s	0
P01.24	Stop speed delay	Setting range: 0.0–600.0s	0.0s	0
P01.25	Open-loop 0Hz output selection	Setting range: 0–2 0: Output without voltage 1: Output with voltage 2: Output with the DC braking current for stop	0	0
P01.26	DEC time for emergency stop	Setting range: 0.0–60.0s	2.0s	0
P01.27	Time of starting segment of DEC S curve	Setting range: 0.0–50.0s	0.1s	0
P01.28	Time of ending segment of DEC S curve	Setting range: 0.0–50.0s	0.1s	0
P01.29- P01.31	Reserved	-	-	-
P01.32	Pre-exciting time for jogging	Setting range: 0.000–10.000s	0.300s	0
P01.33	Starting frequency of braking for stop in jogging	Setting range: 0.00Hz–P00.03	0.00Hz	0
P01.34	Sleep delay	Setting range: 0–3600.0s	0.0s	0

Functio n	Name	Description	Default	Modify
P01.35	Speed tracking method	Setting range: 0x000–0x112 Ones place: Speed tracking method selection 0: Track according to stop frequency 1: Track according to rated frequency 2: Track according to max. frequency Tens place: Tracking direction 0: Single (set) direction 1: Dual (forward and reverse) directions Hundreds place: Tracking current limit (sending no wave when the value exceeded) 0: 20% (relative to the larger of VFD current and motor current) 1: 10% (relative to the larger of VFD current and motor current)	0x000	0
P01.36	Quick/slow selection for speed tracking	Setting range: 0–10000	300	0
P01.37	Speed tracking voltage coefficient	Setting range: 0–50	10	0

Group P02—Parameters of motor

Functio n	Name	Description	Default	Modify
P02.00	Type of	Setting range: 0–1 0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor	0	0
P02.01	Rated power of AM 1	Setting range: 0.1–3000.0kW	Model depended	0
P02.02	Rated frequency of AM 1	Setting range: 0.01Hz–P00.03	50.00Hz	0
P02.03	Rated speed of AM 1	Setting range: 1–60000RPM	Model depended	0

Functio n	Name	Description	Default	Modify
P02.04	Rated voltage of AM 1	Setting range: 0–1200V	Model depended	0
P02.05	Rated current of AM 1	Setting range: 0.08–600.00A	Model depended	0
P02.06	Stator resistance of AM 1	Setting range: 0.001–65.535Ω	Model depended	0
P02.07	Rotor resistance of AM 1	Setting range: 0.001–65.535Ω	Model depended	0
P02.08	Leakage inductance of AM 1	Setting range: 0.1–6553.5mH	Model depended	0
P02.09	Mutual inductance of AM 1	Setting range: 0.1–6553.5mH	Model depended	0
P02.10	No-load current of AM 1	Setting range: 0.01–655.35A	Model depended	0
P02.11	Magnetic saturation coefficient 1 of iron core of AM 1	Setting range: 0.0–100.0%	80.0%	0
P02.12	Magnetic saturation coefficient 2 of iron core of AM 1	Setting range: 0.0–100.0%	68.0%	0
P02.13	Magnetic saturation coefficient 3 of iron core of AM 1	Setting range: 0.0–100.0%	57.0%	0

Functio n	Name	Description	Default	Modify
P02.14	Magnetic saturation coefficient 4 of iron core of AM 1	Setting range: 0.0–100.0%	40.0%	0
P02.15	Rated power of SM 1	Setting range: 0.1–3000.0kW	Model depended	0
P02.16	Rated frequency of SM 1	Setting range: 0.01Hz–P00.03	50.00Hz	0
P02.17	Number of pole pairs of SM 1	Setting range: 1–128	2	0
P02.18	Rated voltage of SM 1	Setting range: 0–1200V	Model depended	0
P02.19	Rated current of SM 1	Setting range: 0.08–600.00A	Model depended	0
P02.20	Stator resistance of SM 1	Setting range: 0.001–65.535Ω	Model depended	0
P02.21	Direct-axis inductance of SM 1	Setting range: 0.01–655.35mH	Model depended	0
P02.22	Quadrature- axis inductance of SM 1	Setting range: 0.01–655.35mH	Model depended	0
P02.23	Counter-emf constant of SM 1	Setting range: 0–10000	300	0
P02.24	Initial pole position of SM 1	Setting range: 0x0000–0xFFFF	0x0000	•

Functio n	Name	Description	Default	Modify
P02.25	Frequency percentage for SM 1 counter-emf identifying	Setting range: 5.0%–100.0%	60.0%	©
P02.26	Overload protection selection of motor 1	Setting range: 0–2 0: No protection 1: Common motor (with low-speed compensation) As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30Hz. 2: Frequency-variable motor (without low-speed compensation) The heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, and therefore it is not necessary to adjust the protection value at low speed running.	2	©
P02.27	Overload protection coefficient of motor 1	Specifies the motor overload protection coefficient. A small motor overload protection coefficient indicates a great overload multiplication (M). When M=116%, protection is performed after motor overload lasts for 1 hour; when M=150%, protection is performed after motor overload lasts for 12 minutes; when M=180%, protection is performed after motor overload lasts for 5 minutes; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately. Setting range: 20.0%–150.0%	100.0	0

Functio n	Name	Description	Default	Modify
P02.28	Power display calibration coefficient of motor 1	Used to adjust the power display value of motor 1. However, it does not affect the control performance of the VFD. Setting range: 0.00–3.00	1.00	0
P02.29	Parameter display selection of motor 1	Setting range: 0–1 0: Display by motor type. In this mode, only parameters related to the present motor type are displayed. 1: Display all. In this mode, all the motor parameters are displayed.	0	0
P02.30	System inertia of motor 1	Setting range: 0.001–65.535kg · m ²	0.001 kg · m²	0
P02.31	Parameter model calculation of motor 1	Setting range: 0–1 0: Disable 1: Enable	0	0
P02.32	Power factor of AM 1	Setting range: 0.00–1.00	0.85	0
P02.33	High word of rated speed of AM 1	Setting range: 0–30 (10kRPM)	0	0
P02.34	Iron core saturation coefficient 1 of AM 1	Setting range: 0.0–200.0%	125.0%	0
P02.35	Iron core saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	125.0%	0
P02.36	Mutual inductance saturation coefficient 1 of AM 2	Setting range: 0.0–200.0%	88.0%	0

Functio n	Name	Description	Default	Modify
P02.37	Mutual inductance saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	88.0%	0
P02.38	Mutual inductance flux weakening coefficient 1 of AM 1	Setting range: 0.0–200.0%	112.5%	0
P02.39	Mutual inductance flux weakening coefficient 2 of AM 1	Setting range: 0.0–200.0%	117.6%	0
P02.40	Mutual inductance flux weakening coefficient 3 of AM 1	Setting range: 0.0–200.0%	122.8%	0
P02.41	Mutual inductance flux weakening coefficient 4 of AM 1	Setting range: 0.0–200.0%	125.0%	0

Group P03—Vector control of motor

Functio n	Name	Description	Default	Modify
P03.00	Speed-loop proportional gain 1 of motor 1	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	0

Functio n	Name	Description	Default	Modify
P03.01	Speed-loop integral time 1 of motor 1	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200s	0
P03.02	Motor 1 switching low-point frequency	Setting range: 0.00Hz–P03.05 Note: Applicable only to vector control mode.	5.00Hz	0
P03.03	Speed-loop proportional gain 2 of motor 1	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	0
P03.04	Speed-loop integral time 2 of motor 1	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200s	0
P03.05	Switching high-point frequency of motor 1	Setting range: P03.02–P00.03(Hz) Note: Applicable only to vector control mode.	10.00Hz	0
P03.06	Speed-loop output filter of motor 1	Setting range: 0–8 (corresponding to 0– 28/10ms)	0	0
P03.07	Electromotive slip compensation coefficient of vector control for motor 1	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100%	0
P03.08		Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100%	0

Functio	Name	Description	Default	Modify
n		-		,
		Setting range: 0–15		
		0: P03.12		
		1: AI1		
		2: AI2		
		3: AI3		
		4: Reserved		
		5: High-speed pulse HDI1		
	Torque	6–7: Reserved		
	setting	8: Multi-step speed running		
P03.11	method	9: Reserved	0	0
	selection of	10: Modbus/Modbus TCP communication		
	motor 1	11: Reserved		
		12: Ethernet communication		
		13: Reserved		
		14: EtherCAT/PROFINET/EtherNet IP		
		communication		
		15: Reserved		
		∠Note: 100% corresponds to the motor rated		
		current.		
	Torque set	Sotting range: 200.0% 200.0%		
P03.12	through	Setting range: -300.0%—300.0% Note: The value is relative to the motor rated	20.0%	0
PU3.12	keypad of		20.0%	
	motor 1	current.		
	Torque			
P03.13	reference	Satting range 0.000 10.000a	0.010-	0
P03.13	filter time of	Setting range: 0.000–10.000s	0.010s	
	motor 1			
		Setting range: 0–15		
	Forward	0: Set by P03.16		
	rotation	1: AI1		
	upper-limit	2: AI2		
DO2 14	frequency	3: AI3		
P03.14	source in	4: Reserved	0	
	torque	5: High-speed pulse HDI1		
	control for	6–7: Reserved	1	
	motor 1	8: Multi-step speed running		
		9: Reserved		

Functio	Name	Description	Default	Modify
P03.15	Reverse rotation upper-limit frequency source in torque control for motor 1	10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency. Setting range: 0–15 0: Set by P03.17 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication	Default	Modify
	motor I	13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.		
P03.16	Forward rotation upper-limit frequency in torque control for motor 1	Specifies the frequency limit when P03.14=0. Setting range: 0.00Hz–P00.03	50.00Hz	0

Functio n	Name	Description	Default	Modify
P03.17	Reverse rotation upper-limit frequency in torque control for motor 1	The function code is used to set the frequency limit when P03.15=0. Setting range: 0.00Hz–P00.03	50.00Hz	0
P03.18	Setting source of electromotive torque upper limit for motor 1	Setting range: 0–15 0: Set by P03.20 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	0
P03.19	Setting source of braking torque upper limit for motor 1	Setting range: 0–15 0: Set by P03.21 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication	0	0

Functio n	Name	Description	Default	Modify
		15: Reserved Note: 100% corresponds to the motor rated current.		
P03.20	Electromotive torque upper limit set through keypad for motor 1	Specifies the torque limit when P03.18 = 0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0%	0
P03.21	Braking torque upper limit set through keypad for motor 1	Specifies the torque limit when P03.19 = 0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0%	0
P03.22	Weakening coefficient in constant power zone for motor 1	Used when the AM is in flux-weakening control. Setting range: 0.0–200.0%	100.0%	0
P03.23	Lowest weakening point in constant power zone for motor 1	Setting range: 5%–100%	5%	0
P03.24	Max. voltage limit on motor 1	Specifies the max. VFD output voltage, which is a percentage of the motor rated voltage. Set the value according to onsite conditions. Setting range: 0.0–120.0%	100.0%	0
P03.25	Pre-exciting time of motor 1	Specifies the pre-exciting time. Pre-exciting is performed for the motor when the VFD starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process. Setting range: 0.000–10.000s Note: Pre-excitation can improve the start-up	0.300s	0

Functio n	Name	Description	Default	Modify
		capability of AM with loads. For an AM, set 0 to disable the pre-excitation process. For an SM, if P13.01 is set to an enabling option, the pre-excitation process is directly skipped.		
P03.26	Flux- weakening proportional gain of motor 1	Setting range: 0–8000	1000	0
P03.27	Speed display selection in vector control for motor 1	Setting range: 0–1 0: Display the actual value 1: Display the set value	0	0
P03.28	Static friction compensation coefficient of motor 1	Setting range: 0.0–100.0%	0.0%	0
P03.29	Static friction corresponding frequency point of motor 1	Setting range: 0.50Hz–P03.31	1.00Hz	0
P03.30	High speed friction compensation coefficient of motor 1	Setting range: 0.0–100.0%	0.0%	0
P03.31	High speed friction corresponding frequency point of motor 1	Setting range: P03.29–P00.03(Hz)	50.00Hz	0

Functio n	Name	Description	Default	Modify
P03.32	Enabling torque control of motor 1	Setting range: 0–1 0: Disable 1: Enable	0	0
P03.33	Flux- weakening integral gain of motor 1	Setting range: 0.0–300.0%	30.0%	0
P03.35	Control mode optimization selection of motor 1	Setting range: 0x0000–0x1111 Ones place: Torque command selection 0: Torque current reference 1: Torque current reference Tens place: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved	0x0000	0
P03.36	Speed-loop differential gain of motor 1	Setting range: 0.00–10.00s	0.00s	0
P03.43	Motor 1 inertia identification torque	Setting range: 0.0–100.0%	10.0%	0
P03.44	Enabling motor 1 inertia identification	Setting range: 0–1 0: Disable 1: Enable	0	©
P03.45	Max. flux weakening current of SM 1	Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated current.	100.0%	©
P03.46	Vector control optimization parameter of motor 1	Setting range: 0x0000–0x0FFF Bit 0: Enable voltage feedforward compensation (valid in FVC) Bit 1: Enable axis-d voltage cross decoupling (valid in FVC) Bit 2: Enable axis-q voltage cross decoupling	0x0037	©

Functio				
n	Name	Description	Default	Modify
		(valid in FVC)		
		Bit 3: Enable closed-loop disturbance		
		feedforward compensation		
		Bit 4: Axis-q voltage restriction selection		
		0: Restricted to 1.2 times the motor rated		
		voltage		
		1: Restricted to axis-d voltage		
		Bit 5: Mutual inductance self-adaptation		
		enabling		
		0: Invalid		
		1: Enable		
		Bit 6: Direct-axis inductance (Ld) saturation		
		enabling		
		0: Invalid		
		1: Enable (suitable for synchronous reluctance		
		motors or synchronous motors where		
		inductance varies significantly with current)		
		Bit 7: Quadrature-axis inductance (Lq)		
		saturation enabling		
		0: Invalid		
		1: Enable (suitable for synchronous reluctance		
		motors or synchronous motors where		
		inductance varies significantly with current)		
		Bit 8: Torque control current optimization		
		enabling		
		0: Invalid		
		1: Enable (suitable for low torque tension		
		control applications)		
		Bit 9: Current loop optimization enabling		
		0: Invalid		
		1: Enable (suitable for low carrier frequency		
		ratio applications)		
		Bit 10: Speed loop optimization enabling		
		0: Invalid		
		1: Enable (requiring inertia identification)		
		Bit 11–Bit 15: Reserved		
	Closed-loop	DIC 11-DIC 13. Neserved		
	speed			
P03 49	observation	Satting range: 10, 2000	10.0	
FU3.49	band width	Setting range: 1.0–200.0	10.0	
	of motor 1			
	of filotor I		l	

Functio n	Name	Description	Default	Modify
P03.50	Vector control energy- saving mode selection of motor 1	Setting range: 0–3 0: Invalid 1: Max. efficiency (recommended) 2: Optimal power factor 3: MTPA	0	©
P03.51	Energy- saving optimization coefficient of motor 1	Setting range: 25.0%–400.0%	100.0%	0
P03.54	Current-loop band width of motor 1	 Setting range: 0–2000 Note: P03.54 is a current loop PI regulation parameter. It impacts the dynamic response speed and control accuracy of the system. Generally, you do not need to modify it. Applicable to SVC 0 (P00.00 = 0) and SVC 1 (P00.00 = 1). 	400	0
P03.58	Quick exciting current of motor 1	Setting range: 0.0–200.0%	0.0%	©
P03.65	Current-loop integral coefficient after autotuning of motor 1	Setting range: 0–65535	0	0
P03.68	Upper limit frequency bias value in torque control of motor 1	Setting range: 0.00Hz–P00.03	0.00Hz	0

Functio n	Name	Description	Default	Modify
P03.69	Upper limit frequency ACC/DEC selection in torque control of motor 1	Setting range: 0–4 0: No limit on acceleration or deceleration 1: ACC/DEC time 1 2: ACC/DEC time 2 3: ACC/DEC time 3 4: ACC/DEC time 4	0	0

Group P04—V/F control of motor

Functio n	Name	Description	Default	Modify
P04.00	V/F curve setting of motor 1	Specifies the V/F curve of motor 1 to meet the needs of different loads. Setting range: 0–5 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 2.0) Curves 2 – 4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from F. F can be adjusted through the frequency setting channel set by P00.06, and V can be adjusted through the voltage setting channel set by P04.13, so as to change the characteristics of the curve.	0	©
P04.01	Torque boost of motor 1	Setting range: 0.0–10.0% Note: 100% corresponds to the rated voltage of motor 1. When the value is set to 0.0%, the VFD uses automatic torque boost.	0.0%	0
P04.02	Torque boost cut-off of motor 1	Setting range: 0.0–50.0% Note: 100% corresponds to the rated frequency of motor 1.	20.0%	0

Functio n	Name	Description	Default	Modify
P04.03	V/F frequency point 1 of motor 1	When P04.00=1 (multi-dot V/F curve), you can set the V/F curve through P04.03–P04.08. Setting range: 0.00–P04.05(Hz) Note: V1≤V2≤V3, f1≤f2≤f3 Too high voltage for low frequency will cause motor overheat or damage and cause VFD overcurrent stall or overcurrent protection.	0.00Hz	0
P04.04	V/F voltage point 1 of motor 1	Setting range: 0.0–110.0% Note: See the description for P04.03. 100% corresponds to the motor rated voltage.	0.0%	0
P04.05	V/F frequency point 2 of motor 1	Setting range: P04.03–P04.07 (Hz) Note: See the description for P04.03.	0.00Hz	0
P04.06	V/F voltage point 2 of motor 1	Setting range: 0.0–110.0% Note: See the description for P04.03. 100% corresponds to the motor rated voltage.	0.0%	0
P04.07	V/F frequency point 3 of motor 1	Setting range: P04.05–P02.02 (Hz, Rated frequency of AM 1) or P04.05–P02.16 (Hz, Rated frequency of SM 1) Note: See the description for P04.03.	0.00Hz	0
P04.08	V/F voltage point 3 of motor 1	Setting range: 0.0–110.0% Note: See the description for P04.03. 100% corresponds to the motor rated voltage.	0.0%	0
P04.09	V/F slip compensation gain of motor 1	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. Setting range: 0.0–200.0%	100.0	0
P04.10	Low-frequen cy oscillation control factor of motor 1	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain	10	0
P04.11	High- frequency oscillation control factor of motor 1	frequencies, which may cause unstable motor running, or even VFD overcurrent. You can adjust the two function parameters properly to eliminate such phenomenon. Setting range: 0–100	10	0

Functio n	Name	Description	Default	Modify
P04.12	Oscillation control threshold of motor 1	Setting range: 0.00Hz–P00.03	30.00Hz	0
P04.13	Voltage setting channel selection for motor 1	Setting range: 0–15 0: Set by P04.14 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved	0	0
P04.14	Voltage set through keypad for motor 1	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0–100.0%	100.0%	0
P04.15	Voltage increase time of motor 1	Voltage increase time means the time needed for the VFD to accelerate from min. output voltage to the max. output frequency. Setting range: 0.0–3600.0s	5.0s	0
P04.16	Voltage decrease time of motor 1	Voltage decrease time means the time needed for the VFD to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0s	0
P04.17	Max. output voltage of motor 1	Specifies the upper limit of output voltage. Setting range: P04.18–100.0% Note: 100% corresponds to the motor rated voltage.	100.0%	0

Functio n	Name	Description	Default	Modify
P04.18	Min. output voltage of motor 1	Specifies the lower limit of output voltage. Setting range: 0.0%–P04.17 Note: 100% corresponds to the motor rated voltage.	0.0%	0
P04.19	Weakening coefficient in constant power zone for motor 1	Setting range: 1.00–1.30	1.00	0
P04.20	Pull-in current 1 in V/F control of SM 1	When the SM V/F control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by P04.22. Setting range: -100.0%—100.0% Note: 100% corresponds to the motor rated current.	30.0%	0
P04.21	Pull-in current 2 in V/F control of SM 1	When the SM V/F control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is greater than the frequency specified by P04.22. Setting range: -100.0%—100.0% Note: 100% corresponds to the motor rated current.	10.0%	0
P04.22	V/F control pull-in current frequency switching point for SM	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated frequency.	20.0%	0
P04.23	V/F control reactive current closed-loop proportional coefficient for SM 1	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0–500	50	0

Functio	Nome	Description	Default	Madifi
n	Name	Description	Delault	Modify
	V/F control			
	reactive	When the SM VF control mode is enabled, the		
DO 4 2 4	current	function code is used to set the integral time	20	
P04.24	closed-loop	of reactive current closed-loop control.	30	0
	integral time	Setting range: 0–300		
	for SM 1			
	V/F control			
	reactive			
P04.25	closed-loop	Setting range: 0–16000	8000	0
	output limit			
	for SM 1			
	Enabling IF			
P04.26	mode for AM	Setting range: 0–1	0	0
	1			
	Current			
	setting in IF			_
P04.27	mode for AM	Setting range: 0.0–200.0%	120.0%	0
	1			
	Proportional			
20100	coefficient in		252	
P04.28	IF mode for	Setting range: 0–5000	350	0
	AM 1			
	Integral			
D0 4 20	coefficient in	C. W	150	
P04.29	IF mode for	Setting range: 0–5000	150	0
	AM 1			
	Frequency			
	threshold for			
P04.30	switching off	Setting range: 0.00Hz–P04.31	10.00Hz	0
	IF mode for			
	motor 1			
	End			
	frequency			
D0 4 21	point for	S	25 0011-	
P04.31	switching off	Setting range: P04.30–P00.03(Hz)	25.00Hz	0
	IF mode for			
	motor 1			

Functio n	Name	Description	Default	Modify
		Setting range: 0-3 0: Disable (Energy saving is invalid)		
P04.32	saving mode	1: Max. efficiency	0	0
	selection for	2: Optimal power factor		
	AM 1	3: Max. ratio of torque to current		
	V/F control	Setting range: 25.0%–400.0%		
	energy-		100.0%	
P04.33	saving			
PU4.33	optimization			
	coefficient			
	for AM 1			

Group P05—Input terminal

Functio n	Name	Description	Default	Modify
P05.00	HDI input type	Setting range: 0–1 0: HDI1 is high-speed pulse input 1: HDI1 is digital input	0	0
P05.01	Function of DI1	Setting range: 0–95 0: No function	1	0
P05.02	Function of DI2	1: Run forward 2: Run reversely	4	0
P05.03	Function of DI3	3: Three-wire running control 4: Jog forward	7	0
P05.04	Function of DI4	5: Jog reversely 6: Coast to stop	0	0
P05.05	Function of DI5	7: Reset faults 8: Pause running	0	0
P05.06	Function of DI6	9: External fault input 10: Increase frequency setting (UP)	0	0
P05.07	Function of DI7	11: Decrease frequency setting (DOWN) 12: Clear the frequency increase/decrease	0	0
P05.08	Function of DI8	setting 13: Switch between A setting and B setting	0	0
P05.11	Function of HDI1	14: Switch between combination setting and A setting	0	0

Functio n	Name	Description	Default	Modify
		15: Switch between combination setting and B		
		setting		
		16: Multi-step speed terminal 1		
		17: Multi-step speed terminal 2		
		18: Multi-step speed terminal 3		
		19: Multi-step speed terminal 4		
		20: Pause multi-step speed running		
		21: ACC/DEC time selection 1		
		22: ACC/DEC time selection 2		
		23: Simple PLC stop reset		
		24: Pause simple PLC		
		25: Pause PID control		
		26: Pause wobbling frequency		
		27: Reset wobbling frequency		
		28: Counter reset		
		29: Switch between speed control and torque		
		control		
		30: Disable ACC/DEC		
		31: Trigger the counter		
		32: Motor switchover		
		33: Reserved		
		34: DC braking		
		35: Clear the frequency increase/decrease		
		setting temporarily		
		36: Switch the running command channel to		
		keypad		
		37: Switch the running command channel to		
		terminal		
		38: Switch the running command channel to		
		communication		
		39: Pre-exciting command		
		40: Clear electricity consumption		
		41: Keep electricity consumption		
		42: Switch the setting source of braking torque		
		upper limit to keypad		
		43–55: Reserved		
		56: Emergency stop		
		57: Motor overtemperature fault input		

Functio n	Name		D	escrip	tion		Default	Modify
		58–60: Res	served					
		61: Switch	PID polar	rities				
		62–95: Re	served					
		✓Note: □	015–D18 a	re virtu	ual terminals	enabled		
		by P05.16	and can	only b	e modified t	hrough		
		communi	cation. F	or Mo	dbus/Modbu	s TCP		
		communic	ation, the	virtual	terminal addr	ess is		
		0x200A. F	or other	comm	unication pro	otocols,		
		see the P	ZD receiv	ing fu	nction code o	options.		
		Specifies i	nput terr	ninal p	olarity.			
		When a b	it is 0, the	e input	terminal is p	ositive.		
	Innut	When a b	it is 1, the	input	terminal is ne	egative.		
P05.14	Input terminal	Setting ra	nge: 0x00	00-0x7	FF		0x000	
FU3.14	polarity	Bit0	Bit1	Bit2	Bit3	Bit4	UXUUU	
	polarity	DI1	DI2	DI3	DI4	DI5		
		Bit5	Bit6	Bit7	Bit8-bit9	Bit10		
		DI6	DI7	DI8	Reserved	HDI1		
		Specifies	the samp	oling fi	lter time of th	ne DI1-		
	Digital input	DI8, and HDI1 terminals. In strong interference cases, increase the value to avoid maloperation.						
P05.15							0.010s	0
	iliter time							
		Setting ra	nge: 0.000	0–1.000	Os			
		Setting rar	nge: 0x000	0-0x7F	F (0: disable; 1:	:		
		enable)						
		Bit0	Bit1	Bit2	Bit3	Bit4		
		DI1	DI2	DI3	DI4	DI5		
		Bit5	Bit6	Bit7	Bit8-bit9	Bit10		
	Virtual	DI6	DI7	DI8	Reserved	HDI1		
P05.16	terminal setting	∠Note: A	fter virtua	l termir	nals are enable	ed, the	0x000	0
		terminal s	states car	n only l	oe modified t	hrough		
		communi	cation. F	or Mo	dbus/Modbu	s TCP		
		communic	ation, the	virtual	terminal addr	ress is		
		0x200A. F	or other	comm	unication pro	otocols,		
		see the P	ZD receiv	ing fu	nction code o	options.		
	Terminal	Specifies t	he termin	al cont	rol mode.			
P05.17	control	Setting ra	inge: 0–3	}			0	0
	mode	0: Two-wii	re control	mode	1			

Functio n	Name	Description	Default	Modify
		1: Two-wire control mode 2 2: Three-wire control mode 1 3: Three-wire control mode 2		
P05.18	DI1 switch-on delay	5. Three-wife control mode 2	0.000s	0
P05.19	DI1 switch-off delay		0.000s	0
P05.20	DI2 switch-on delay		0.000s	0
P05.21	DI2 switch-off delay		0.000s	0
P05.22	DI3 switch-on delay		0.000s	0
P05.23	DI3 switch-off delay	Used to specify the delay time corresponding to the electrical level change when a programmable input terminal switches on or switches off.	0.000s	0
P05.24	DI4 switch-on delay		0.000s	0
P05.25	DI4 switch-off delay		0.000s	0
P05.26	DI5 switch-on delay	Setting range: 0.000–50.000s Note: DI5–DI8 are virtual terminals enabled	0.000s	0
P05.27	DI5 switch-off delay	by P05.16 and can only be modified through communication. For Modbus/Modbus TCP communication, the virtual terminal address is	0.000s	0
P05.28	DI6 switch-on delay	0x200A. For other communication protocols, see the PZD receiving function code options.	0.000s	0
P05.29	DI6 switch-off delay	see the 125 receiving function code options.	0.000s	0
P05.30	DI7 switch-on delay		0.000s	0
P05.31	DI7 switch-off delay		0.000s	0
P05.32	DI8 switch-on delay		0.000s	0
P05.33	switch-off delay		0.000s	0

Functio n	Name	Description	Default	Modify
	HDI1			
P05.38	switch-on		0.000s	0
	delay			
	HDI1			
P05.39	switch-off		0.000s	0
	delay			
DOE 42	Al1 lower	The function codes define the relationship	0.001/	
P05.42	limit	between the analog input voltage and its	0.00V	0
	Corresponding	corresponding setting. When the analog input		
P05.43	setting of Al1	voltage exceeds the range from the upper limit	0.0%	0
	lower limit	to the lower limit, the upper limit or lower		
	Al1 upper	limit is used.		
P05.44	limit	When the analog input is current input, 0mA–	10.00V	0
	Corresponding	20mA current corresponds to 0V–10V voltage.		
P05.45	setting of AI1	In different applications, 100.0% of the analog	100.0%	0
	upper limit	setting corresponds to different nominal		
505.46	Al1 input	values. See the descriptions of each	2.222	
P05.46	P05.46 filter time	application section for details. See section	0.030s	0
	Al2 lower	6.9.2.1 Analog input.		
P05.47	limit	Setting range:	-10.00V	0
	Corresponding	P05.42: 0.00V–P05.44		
P05.48	setting of AI2		-100.0%	0
	lower limit	P05.44: P05.42–10.00V		
	Al2 middle	P05.45: -300.0%-300.0%		
P05.49	value 1	P05.46: 0.000–10.000s	0.00V	0
	Corresponding	P05.47: -10.00V–P05.49		
505 50	setting of AI2	P05.48: -300.0%-300.0%	0.00/	
P05.50	middle value	P05.49: P05.47–P05.51(V)	0.0%	0
	1	P05.50: -300.0%-300.0%		
	Al2 middle	P05.51: P05.49–P05.53(V)		
P05.51	value 2	P05.52: -300.0%-300.0%	0.00V	0
	Corresponding	P05.53: P05.51–10.00V		
DOE 53		P05.54: -300.0%-300.0%	0.00/	
P05.52		P05.55: 0.000–10.000s	0.0%	0
	2	P05.56: 0.00V–P05.58		
DOE 53	Al2 upper	P05.57: -300.0%-300.0%	10.00\	_
P05.53	limit	P05.58: P05.56–10.00V	10.00V	

Functio n	Name	Description	Default	Modify
•	Corresponding	POE EO. 200 00/ 200 00/		
P05.54		P05.59: -300.0%–300.0% P05.60: 0.000–10.000s	100.0%	0
P05.54	upper limit		100.0%	
	Al2 input	Note:		
P05.55	filter time	• Al1: supports 0–10V, corresponding to 0–	0.030s	0
		20mA.		
P05.56	Al3 lower	• Al2: supports -10–10V, corresponding to 0–	0.00V	0
	limit	20mA.		
	Corresponding	, '' '		
P05.57	1	input source.	0.0%	0
	lower limit			
P05.58	Al3 upper		10.00V	0
1 03.30	limit		10.00 \$	
	Corresponding			
P05.59	setting of AI3		100.0%	0
	upper limit			
P05.60	AI3 input		0.030s	0
F03.00	filter time		0.0308	0
	Corresponding			
	setting of			
P05.67	HDI1 lower		0.000kHz	0
	limit			
	frequency	The function codes define the relationship		
	HDI1 upper	between the high-speed pulse input and the corresponding setting. When the high-speed		
P05.68	limit	pulse input exceeds the range from the upper	0.0%	0
	frequency	limit to the lower limit, the upper limit or		
	Corresponding	lower limit is used.		
DOE 60	setting of	Setting range:	50 000 111	
P05.69	HDI1 upper limit	P05.66: 0.000kHz–P05.68	50.000 kHz	0
	frequency	P05.67: -300.0%-300.0%		
	HDI1	P05.68: P05.66–50.000kHz		
	frequency	P05.69: -300.0%-300.0%		
P05.70	input filter	P05.70: 0.000–10.000s	100.0%	0
	time	^Note: HDI1 high-speed pulse input ranges		
	Corresponding	from 0.000kHz to 50.000kHz.		
	setting of			
P05.67	HDI1 lower		0.030s	0
	limit			
	frequency			

Functio n	Name	Description	Default	Modify
P05.76	Al input signal type selection	Setting range: 0x0–0x3 (0: Voltage; 1: Current) Bit0: Al1 input signal type selection Bit1: Al2 input signal type selection Note: The setting is made by turning the Al switch to the "I" or "V" position.	0x0	0

Group P06—Output terminal

Functio n	Name	Description	Default	Modify
P06.00	D1 output type	Setting range: 0–1 0: High-speed pulse output 1: Digital output Note: HDO1 uses push-pull output.	0	©
P06.04	HDO1 output	Setting range: 0–63	0	0
P06.05	RO1 output	0: Invalid 1: Running 2: Running forward 3: Running reversely 4: Jogging 5: VFD in fault 6: Frequency level detection FDT1 7: Frequency level detection FDT2 8: Frequency reached 9: Running in zero speed 10: Frequency upper limit reached 11: Frequency lower limit reached 12: Ready for running 13: Pre-exciting 14: Overload alarm 15: Underload alarm 16: Simple PLC stage completed 17: Simple PLC cycle completed 18: Set counting value reached 19: Specified counting value reached 20: External fault is valid 21: Specified function code value greater than threshold 22: Running time reached 23: Modbus/ Modbus TCP communication	1	0

n	Name	Description virtual terminal output	Default	Modify
		virtual terminal output		
		24: Reserved		
		25: Ethernet communication virtual terminal		
		output		
		26: DC bus voltage established		
		27–28: Reserved		
		29: STO action		
		30–33: Reserved 34: EtherCAT/PROFINET/EtherNet IP		
		communication virtual terminal output		
		35–36: Reserved		
		37: Any frequency reached 38–		
		63: Reserved		
		Note: When P06.00 is set to 1, P06.04 (HDO1		
		output) is valid.		
		Setting range: 0x00–0x1F		
		Bit 0: Reserved		
	Output	Bit 1: Reserved		
	erminal	Bit 2: Reserved	0x00	0
p	oolarity	Bit 3: HDO1		
		Bit 4: RO1		
		Specifies the delay time corresponding to the		
	HDO1	electrical level change when a programmable		
P06.16	switch-on	output terminal switches on or switches off.	0.000	0
	delay	Setting range: 0.000–50.000s		
		Specifies the delay time corresponding to the		
	HDO1	electrical level change when a programmable		
P06.17	switch-off	output terminal switches on or switches off.	0.000	0
	delay	Setting range: 0.000–50.000s		
		Specifies the delay time corresponding to the		
	RO1	electrical level change when a programmable		
P06.18	switch-on	output terminal switches on or switches off.	0.000-	-
	delay			
		Setting range: 0.000-50.000s		
		Specifies the delay time corresponding to the		
	RO1	, , , ,		
P06.19	switch-off	electrical level change when a programmable	0.000	0
	delay	output terminal switches on or switches off.		
		Setting range: 0.000–50.000s		

Functio	Name	Description	Default	Modify
n	Name	Description	Derault	мошту
P06.26	AO1 output	Setting range: 0–63	0	0
		0: Running frequency		
		1: Set frequency		
		2: Ramp reference frequency		
		3: Rotational speed (100% corresponds to the		
		speed corresponding to the max. output		
		frequency)		
		4: Output current (100% corresponds to twice		
		the VFD rated current)		
		5: Output current (100% corresponds to twice		
		the motor rated current)		
		6: Output voltage (100% corresponds to 1.5		
		times the VFD rated voltage)		
		7: Output power (100% corresponds to twice		
		the motor rated power)		
		8: Set torque (100% corresponds to twice the		
		motor rated torque)		
		9: Output torque (Absolute value, 100%		
	HDO1	corresponds to twice the motor rated torque)		
P06.28	high-speed	10: Al1 input	0	0
	pulse output	11: Al2 input		
		12: Al3 input		
		13: Reserved		
		14: HDI1 input value		
		15: Reserved		
		16: Value 1 set through Modbus/Modbus TCP		
		communication		
		17: Value 2 set through Modbus/Modbus TCP		
		communication		
		18–19: Reserved		
		20: Value 1 set through Ethernet		
		communication		
		21: Value 2 set through Ethernet		
		communication		
		22: Value 1 set through		
		EtherCAT/PROFINET/EtherNet IP		
		communication		
		23: Value 2 set through		

Functio n	Name	Description	Default	Modify
		EtherCAT/PROFINET/EtherNet IP		
		communication		
		24: Torque current (100% corresponds to triple		
		the motor rated current)		
		25: Exciting current (100% corresponds to		
		triple the motor rated current)		
		26: Set frequency (bipolar)		
		27: Ramp reference frequency (bipolar)		
		28: Rotational speed of running (bipolar)		
		29–30: Reserved		
		31: Rotational speed of running (100%		
		corresponds to the speed at twice the motor		
		rated frequency)		
		32: Output torque (Actual value, 100%		
		corresponds to twice the motor rated torque)		
		33: AIAO detected temperature output		
		34–39: Reserved		
		40: Specified function code value		
		41–63: Reserved		
		Note: When P06.00 is set to 0, P06.28 (HDO1		
		high-speed pulse output) is valid.		
P06.29	AO1 output	The function codes define the relationship	0.0%	0
1 00.23	lower limit	between the output value and analog output.	0.070	
	AO1 output	When the output value exceeds the allowed		
P06.30	corresponding	range, the output uses the lower limit or upper	0.00V	0
1 00.50	to lower	limit.	0.00 V	
	limit	When the analog output is current output,		
P06.31	AO1 output	1mA equals 0.5V.	100.0%	0
1 00.51	upper limit	In different cases, the corresponding analog	100.070	
	AO1 output	output of 100% of the output value is different.		
P06.32	corresponding		10.00V	0
PU6.32	to upper	Note: AO1 supports 0−10V, corresponding to	10.000	
	limit	0–20mA.		
		Setting range:		
	AO1 output	Setting range of P06.29: -300.0%-P06.31		
P06.33	filter time	Setting range of P06.30: 0.00–10.00V	0.000s	0
		Setting range of P06.31: P06.29–300.0%		
		Setting range of P06.32: 0.00–10.00V		

Functio n	Name	Description	Default	Modify
		Setting range of P06.33: 0.000–10.000s		
P06.41	HDO1 output Iower limit	The function codes define the relationship	0.0%	0
P06.42	HDO1 output corresponding to lower limit	between the output value and high-speed pulse output. When the output value exceeds the allowed range, the output uses the lower limit or upper limit.	0.00kHz	0
P06.43	HDO1 output upper limit	Setting range: Setting range of P06.41: -300.0%–P06.43 Setting range of P06.42: 0.00–50.00kHz	100.0%	0
P06.44	HDO1 output corresponding to upper limit	Setting range of P06.43: P06.41–300.0% Setting range of P06.44: 0.00–50.00kHz Setting range of P06.45: 0.000–10.000s	50.00kHz	0
P06.45	HDO1 output filter time	Note: HDO1 high-speed pulse output ranges from 0.000kHz to 50.00kHz.	0.000s	0
P06.47	AIAO temperature measurement selection	When AIAO temperature measurement is enabled, you need to turn the corresponding AI switch to the "V" position, set the AI input type to voltage, turn the AO switch to the "I" position, connect the temperature resistor between the AO terminal and GND terminal, and connect the corresponding AI terminal to the AO terminal. Setting range: 0x00–0x15 Ones place: Temperature sensor type 0: None 1: PT100 2–5: Reserved Tens place: AI input source 0: AI1 1: AI2 *Note: Before using the AI/AO temperature measurement function, ensure that AI/AO has been calibrated.	0×00	0
P06.48	AIAO detected temperature OT protection threshold	Setting range: 0.0–200.0°C	110.0°C	0

Functio n	Name	Description	Default	Modify
P06.51	AIAO measured temperature	Setting range: -20.0–200.0°C	0.0°C	•
P06.56	Digital output specified function code	Note: The setting 0 indicates invalid function code. To use this function, select 21 as the digital output function. For details, see section 6.9.1.2 Digital output.	97.99	0
P06.57	Digital output specified function code threshold	Setting range: 0–65535 Note: When the specified function code is a signed value, the threshold will be internally converted accordingly.	65535	0
P06.58	Digital output specified function code hysteresis width	Note: The output is valid when the specified function code value exceeds the threshold. The output is invalid when the specified function code value plus the hysteresis width is less than or equal to the threshold. Within the hysteresis range, the output state remains unchanged.	65535	0
P06.59	HDO1 high-speed pulse/AO specified function code	Setting range: 0.00–97.99 Note: The setting 0 indicates invalid function code. To use this function, select 40 as the digital output function. For details, see section 6.9.2.2 Analog output.	97.99	0
P06.60	HDO1 high-speed pulse/AO base value	Setting range: 1–65535	65535	0
P06.61	HDO1 high-speed pulse/AO offset	Setting range: -100.00%—100.00% Note: When HDO1 high-speed pulse/AO1 setting is the specified function code value, the output value is calculated as: (Specified function code value/Base value) * 100.00% + Offset	0.00%	0

Group P07—Human-machine

Functio n	Name	Description	Default	Modify
P07.00	User password	The user password protection function is not enabled by default (that is, the default value is 0). If it is set to any non zero value, the password protection function is enabled. After you exit the function code editing interface, the password takes effect within 1 minute. When you press the RG/JOG key, "0.0.0.0.0" is displayed. You need to enter the correct user password to enter the function code editing interface. When you set the value to 00000, the user password you have set is cleared, and the user password protection function is disabled. Setting range: 0–65535	0	0
P07.01	rameter copy	Setting range: 0–4 0: No operation 1: Upload parameters to the keypad 2: Download all parameters (including motor parameters) 3: Download non-motor parameters 4: Download motor parameters *Note: Both the external LED keypad and LCD keypad support the parameter copy function, but the local LED keypad does not support this function.	0	©
P07.02	Function of QUICK/JOG	Setting range: 0x00–0x26 Ones place: Function of QUICK/JOG 0: No function 1: Jog 2: Reserved 3: Switch between forward and reverse rotating 4: Clear the UP/DOWN setting 5: Coast to stop 6: Switch command channels in sequence Tens place: Reserved	0x01	©

Functio	Name	Description	Default	Modify
n	rume	Description .	Delaute	Modify
		Note: The external keypad has the		
		QUICK/JOG key, while pressing and holding		
		the PRO/OG key on the local LED keypad		
		performs the same function as the QUICK/JOG		
		key.		
		Specifies the sequence of switching		
		running-command channels by pressing the		
		key when P07.02=6.		
	Sequence of	Setting range: 0–3		
	switching	0: Keypad→Terminal→Communication		
	running-com	1: Keypad←→Terminal		
P07.03	mand	2: Keypad←→Communication	0	0
	channels by	3: Terminal ← → Communication		
	pressing	△Note: The external keypad has the		
	QUICK	QUICK/JOG key, while pressing and holding		
		the PRO/OG key on the local LED keypad		
		performs the same function as the QUICK/JOG		
		key.		
		Specifies the validness range of the stop		
		function. For fault reset, the key is valid in any		
		conditions.		
	Stop	Setting range: 0–3		
P07.04	function	0: Valid only for keypad control	0	0
	validity of	1: Valid both for keypad and terminal control		
	STOP/RST	2: Valid both for keypad and communication		
		control		
		3: Valid for all control modes		
		Setting range: 0x0000–0xFFFF		
		Bit 0: Running frequency (Hz on)		
	Selection 1	Bit 1: Set frequency (Hz blinking)		
	of	Bit 2: Bus voltage (V on)		
	parameters	Bit 3: Output voltage (V on)		
P07.05	displayed in	Bit4: Output current (A on)	0x03FF	
	running	Bit 5: Running speed (rpm on)		
	state	Bit 6: Output power (% on)		
		Bit7: Output torque (% on)		
		Bit8: PID reference value (% blinking)		

Functio				
n	Name	Description	Default	Modify
		Bit 9: PID feedback value (% on)		
		Bit 10: Input terminal status		
		Bit 11: Output terminal status		
		Bit 12: Set torque (% on)		
		Bit 13: Pulse counting value		
		Bit 14: Motor overload percentage (% on)		
		Bit 15: PLC and current step number of		
		multi-step speed		
		Setting range: 0x0000–0xFFFF		
		Bit 0: Al1 value (V on)		
		Bit 1: Al2 value (V on)		
	Selection 2	Bit 2: Al3 value (V on)		
	of	Bit 3: Reserved		
	parameters	Bit 4: High-speed pulse HDI1 frequency		
P07.06	'	Bit 5: Reserved	0x0000	0
	displayed in running	Bit 6: VFD overload percentage (% on)		
	state	Bit 7: Ramp frequency reference (Hz on)		
	state	Bit 8: Linear speed		
		Bit 9: Reserved		
		Bit 10: Frequency upper limit		
		Bit 11–Bit 15: Reserved		
		Setting range: 0x0000–0xFFFF		
		Bit 0: Set frequency (Hz on, blinking slowly)		
		Bit 1: Bus voltage (V on)		
		Bit 2: Input terminal status		
		Bit 3: Output terminal status		
	Selection 1	Bit 4: PID reference value (% blinking)		
	of	Bit 5: PID feedback value (% on)		
	parameters	Bit 6: Set torque (% on)		
P07.08	displayed in	Bit 7: Al1 value (V on)	0x00FF	0
	stopped	Bit 8: Al2 value (V on)		
	state	Bit 9: AI3 value (V on)		
	state	Bit 10: Reserved		
		Bit 11: High-speed pulse HDI1 frequency		
		Bit12: Reserved		
		Bit 13: Count value		
		Bit 14: PLC and actual step number of		
		multi-step speed		

Functio n	Name	Description	Default	Modify
		Bit 15: Frequency upper limit		
P07.12	Inverter module temperature	Setting range: -20.0–120.0°C	0.0°C	•
P07.13	Control software version	Setting range: 1.00-655.35	Version depended	•
P07.14	Drive software version	Setting range: 1.00-655.35	Version depended	•
P07.17	VFD model	Setting range: 0x0000–0xFFF Bit0–bit3: Reserved Bit4–bit11: Chip type and manufacturer 0x00: DSP(TI) 0x01–0xFF: Reserved Bit12–bit15: VFD series 0x0: DRV-240 0x1–0xF: Reserved	Model depended	•
P07.18	VFD rated power	Setting range: 0.2–3000.0kW	Model depended	•
P07.19	VFD rated voltage	Setting range: 50–1200V	Model depended	•
P07.20	VFD rated current	Setting range: 0.01–600.00A	Model depended	•
P07.21	Factory bar code 1	Setting range: 0x0000–0xFFFF	0xFFFF	•
P07.22	Factory bar code 2	Setting range: 0x0000–0xFFFF	0xFFFF	•
P07.23	Factory bar code 3	Setting range: 0x0000–0xFFFF	0xFFFF	•
P07.24	Factory bar code 4	Setting range: 0x0000–0xFFFF	0xFFFF	•
P07.25	Factory bar code 5	Setting range: 0x0000–0xFFFF	0xFFFF	•
P07.26	Factory bar code 6	Setting range: 0x0000–0xFFFF	0xFFFF	•

		deficial rulpose vi b	·	
Functio n	Name	Description	Default	Modify
D07.07	Present fault	Setting range: 0–588		
P07.27	type	0: No fault	0	•
D07.20	Last fault	1–3: Reserved	0	
P07.28	type	4: Overcurrent during ACC (E4)	0	
D07.20	2nd-last	5: Overcurrent during DEC (E5)	0	
P07.29	fault type	6: Overcurrent during constant speed running	0	
D07.20	3rd-last fault	(E6)	0	
P07.30	type	7: Overvoltage during ACC (E7)	0	•
207.04	4th-last fault	8: Overvoltage during DEC (E8)		
P07.31	type	9: Overvoltage during constant speed running	0	•
		(E9)		
		10: DC bus undervoltage (E10)		
		11: Motor overload (E11)		
		12: VFD overload (E12)		
		13: Phase loss on input side (E13)		
		14: Phase loss on output side (E14)		
		15: Reserved		
		16: Inverter module overheat (E16)		
		17: External fault (E17)		
		18: Modbus/Modbus TCP communication fault		
		(E18)		
		19: Current detection fault (E19)		
		20: Motor autotuning fault (E20)		
D07.33	-last fault	21: EEPROM operation error (E21)	0	
P07.32	type	22: PID feedback offline fault (E22)	0	
		23: Braking unit fault (E23)		
		24: Running time reached (E24)		
		25: Electronic overload (E25)		
		26: Reserved		
		27: Parameter upload error (E27)		
		28: Parameter download error (E28)		
		29: Reserved		
		30: Ethernet communication fault (E30)		
		31: Reserved		
		32: To-ground short-circuit fault (E32)		
		33: Reserved		
		34: Speed deviation fault (E34)		
		35: Mal-adjustment fault (E35)		

Functio				
n	Name	Description	Default	Modify
		36: Underload fault (E36)		
		37–39: Reserved		
		40: STO safe torque off (E40)		
		41: STO channel 1 safety circuit exception		
		(E41)		
		42: STO channel 2 safety circuit exception		
		(E42)		
		43: Exception in both STO channels 1 and 2		
		(E43)		
		44: STO safety code FLASH CRC fault (E44) 45–		
		56: Reserved		
		57: PROFINET communication timeout fault		
		(E57)		
		58: Reserved		
		59: Motor overtemperature fault (E59)		
		60: Communication card identifying failure		
		(E60) 61–62: Reserved		
		63: Communication card communication		
		timeout fault (E63)		
		64–65: Reserved		
		66: EtherCAT communication timeout fault		
		(E66)		
		67–91: Reserved		
		92: Al1 disconnection fault (E92)		
		93: Al2 disconnection fault (E93)		
		94: Al3 disconnection fault (E94)		
		95: EtherNet IP communication timeout (E95)		
		96: No upgrade bootload (E96)		
		97–586: Reserved 587: Dual-CPU communication fault 1 (E587)		
		588: Dual-CPU communication fault 2 (E588)		
	Running	(2500)		
P07.33	frequency at	Setting range: 0.00–600.00Hz	0.00Hz	•
	present fault			
	Ramp			
207.04	reference			
P07.34	frequency at	Setting range: 0.00–600.00Hz	0.00Hz	•
	present fault			

Functio n	Name	Description	Default	Modify
P07.35	Output voltage at present fault	Setting range: 0–1200V	0V	•
P07.36	Output current at present fault	Setting range: 0.00–630.00A	0.00A	•
P07.37	Bus voltage at present fault	Setting range: 0.0–2000.0V	0.0V	•
P07.38	Max. temperature at present fault	Setting range: -20.0–120.0°C	0.0°C	•
P07.39	Input terminal status at present fault	Setting range: 0x0000–0xFFFF	0x0000	•
P07.40	Output terminal state at present fault	Setting range: 0x0000–0xFFFF	0x0000	•
P07.44	Running frequency at last fault	Setting range: 0.00-600.00Hz	0.00Hz	•
P07.45	Ramp reference frequency at last fault	Setting range: 0.00–600.00Hz	0.00Hz	•
P07.46	Output voltage at last fault	Setting range: 0–1200V	0V	•
P07.47	Output current at last fault	Setting range: 0.00–630.00A	0.00A	•
P07.48	Bus voltage at last fault	Setting range: 0.0–2000.0V	0.0V	•
P07.49	Temperature at last fault	Setting range: -20.0–120.0°C	0.0°C	•

				1
Functio n	Name	Description	Default	Modify
P07.50	Input terminal state at last fault	Setting range: 0x0000–0xFFFF	0x0000	•
P07.51	Output terminal state at last fault	Setting range: 0x0000–0xFFFF	0x0000	•
P07.55	Running frequency at 2nd-last fault	Setting range: 0.00–600.00Hz	0.00Hz	•
P07.56	Ramp reference frequency at 2nd-last fault	Setting range: 0.00–600.00Hz	0.00Hz	•
P07.57	Output voltage at 2nd-last fault	Setting range: 0–1200V	0V	•
P07.58	Output current at 2nd-last fault	Setting range: 0.00–630.00A	0.00A	•
P07.59	Bus voltage at 2nd-last fault	Setting range: 0.0–2000.0V	0.0V	•
P07.60	Temperature at 2nd-last fault	Setting range: -20.0–120.0°C	0.0°C	•
P07.61	Input terminal state at 2nd-last fault	Setting range: 0x0000–0xFFFF	0x0000	•

Functio n	Name	Description	Default	Modify
P07.62	Output terminal state at 2nd-last fault	Setting range: 0x0000–0xFFFF	0x0000	•
P07.72	Frequency display coefficient	Setting range: 0.01–10.00 Display frequency = Running frequency * P07.72	1.00	0
P07.73	Rotational speed display coefficient	Setting range: 0.1–999.9% Mechanical rotation speed = 120× (Displayed running frequency) × P07.73/(Number of motor pole pairs)	100.0%	0
P07.74	Linear speed display coefficient	Setting range: 0.1%–999.9% Linear speed = (Mechanical rotation speed) × P07.74	1.0%	0
P07.75	Local accumulative running time	Setting range: 0-65535h	0h	•
P07.76	VFD electricity consumption high bit	The function code is used to display the electricity consumption of the VFD. VFD electricity consumption = P07.76 × 1000 + P07.77 Setting range: 0–65535kkWh	0kkWh	•
P07.77	VFD electricity consumption low bit	The function code is used to display the electricity consumption of the VFD. VFD electricity consumption = P07.76 × 1000 + P07.77 Setting range: 0.0–999.9kWh	0.0kkWh	•

Group P08—Enhanced

Functio n	Name	Description	Default	Modify
P08.00	ACC time 2	Setting range: 0.0–3600.0s	Model depended	0
P08.01	DEC time 2	Setting range: 0.0–3600.0s	Model depended	0

Functio n	Name	Description	Default	Modify
P08.02	ACC time 3	Setting range: 0.0–3600.0s	Model depended	0
P08.03	DEC time 3	Setting range: 0.0–3600.0s	Model depended	0
P08.04	ACC time 4	Setting range: 0.0–3600.0s	Model depended	0
P08.05	DEC time 4	Setting range: 0.0–3600.0s	Model depended	0
P08.06	Switching frequency of ACC/DEC time	Setting range: 0.00Hz–P00.03 Note: If the running frequency is greater than P08.06, switch to ACC/DEC time 2.	0.00Hz	0
P08.07	Reference frequency of ACC/DEC time	Setting range: 0–2 0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid for straight ACC/DEC only.	0	0
P08.08	Running frequency of jog	Specifies the reference frequency during jogging. Setting range: 0.00Hz–P00.03	5.00Hz	0
P08.09	CC time for jogging	Specifies the time needed for the VFD to accelerate from 0Hz to the max. output frequency (P00.03). Setting range: 0.0–3600.0s	Model depended	0
P08.10	EC time for jogging	Specifies the time needed for the VFD to decelerate from the max. output frequency (P00.03) to 0Hz. Setting range: 0.0–3600.0s	Model depended	0
P08.11	Jump frequency 1	The VFD can avoid mechanical resonance	0.00Hz	0
P08.12	Jump frequency amplitude 1	points by setting jump frequencies. When the set frequency is within the range of jump frequency, the VFD runs at the boundary of	0.00Hz	0
P08.13	Jump frequency 2	jump frequency. The VFD supports the setting of three jump frequencies. If the jump	0.00Hz	0
P08.14	Jump frequency amplitude 2	frequency points are set to 0, this function is invalid. Setting range: 0.00Hz–P00.03	0.00Hz	0

Functio n	Name	Description	Default	Modify
P08.15	Jump frequency 3		0.00Hz	0
P08.16	Jump frequency amplitude 3		0.00Hz	0
P08.17	Amplitude of wobbling frequency	Setting range: 0.0–100.0% (of the set frequency)	0.0%	0
P08.18	Amplitude of sudden jump frequency	Setting range: 0.0–50.0% (of the amplitude of wobbling frequency)	0.0%	0
P08.19	Rise time of wobbling frequency	Setting range: 0.1–3600.0s	5.0s	0
P08.20	Fall time of wobbling frequency	Setting range: 0.1–3600.0s	5.0s	0
P08.21	Filter count in output torque display	Setting range: 0–8	8	0
P08.22	Output torque display selection	Setting range: 0–1 0: Based on torque current 1: Based on output power	0	0
P08.23	Number of decimal places of frequency	Setting range: 0–1 0: Two 1: One	0	0
P08.24	Number of decimal places of linear speed	Setting range: 0–3 0: None 1: One 2: Two 3: Three	0	0
P08.25	Set counting value	Setting range: P08.26–65535	0	0

Functio n	Name	Description	Default	Modify
	Designated			
P08.26	counting	Setting range: 0–P08.25	0	0
	value			
P08.27	Set running time	Setting range: 0–65535min	0min	0
		Specifies the number of automatic fault reset		
		times when the VFD uses automatic fault reset.		
		When the number of continuous reset times		
	Auto fault	exceeds the value, the VFD reports a fault and		
P08.28	reset count	stops.	0	0
	reset count	After VFD starts, If no fault occurred within		
		600s after the VFD starts, the number of		
		automatic fault reset times is cleared.		
		Setting range: 0–10		
		Specifies the time interval from when a fault		
P08.29	Auto fault	occurred to when automatic fault reset takes	1.0s	0
F00.23	reset interval	effect.	1.05	
		Setting range: 0.1–3600.0s		
		0x00-0x14		
		Ones place: Switchover channel		
		0: Terminal		
		1: Modbus/Modbus TCP communication		
	Motor	2: Reserved		
P08.31	switchover	3: Ethernet	0x00	0
FU0.51	selection	4: EtherCAT/PROFINET/EtherNet IP	UXUU	
	Selection	communication		
		Tens place: indicates whether to enable		
		switchover during running		
		0: Disable		
		1: Enable		
		Used to view the FDT1 electrical level		
	FDT1	detection value. When the output frequency		
	electrical	exceeds the corresponding frequency of FDT		
P08.32	level	electrical level, the multifunction digital	50.00Hz	0
	detection	output terminal continuously outputs the		
	value	signal of "Frequency level detection FDT". The		
		signal is invalid only when the output		

Functio n	Name	Description	Default	Modify
		frequency decreases to a value lower than the		
		frequency corresponding to (FDT electrical		
		level—FDT lagging detection value).		
		Setting range: 0.00Hz–P00.03		
		Used to view the FDT1 lagging detection value.		
		When the output frequency exceeds the		
		corresponding frequency of FDT electrical		
		level, the multifunction digital output terminal		
		continuously outputs the signal of "Frequency		
	FDT1 lagging	level detection FDT". The signal is invalid only		
P08.33	detection	when the output frequency decreases to a	5.0%	
	value	value lower than the frequency corresponding		
		to (FDT electrical level—FDT lagging detection		
		value).		
		Setting range of: 0.0–100.0% (FDT1 electrical		
		level)		
		Used to view the FDT2 electrical level		
		detection value. When the output frequency		
		exceeds the corresponding frequency of FDT		
	FDT2	electrical level, the multifunction digital		
	electrical	output terminal continuously outputs the		
P08.34	level	signal of "Frequency level detection FDT". The	50.00Hz	0
	detection	signal is invalid only when the output		
	value	frequency decreases to a value lower than the		
		frequency corresponding to (FDT electrical		
		level—FDT lagging detection value).		
		Setting range: 0.00Hz-P00.03		
		Used to view the FDT2 lagging detection value.		
		When the output frequency exceeds the		
		corresponding frequency of FDT electrical		
	FDT2 lagging	level, the multifunction digital output terminal		
	FDT2 lagging	continuously outputs the signal of "Frequency	F 00/	
P08.35	detection value	level detection FDT". The signal is invalid only	5.0%	
	value	when the output frequency decreases to a		
		value lower than the frequency corresponding		
		to (FDT electrical level—FDT lagging detection		
		value).		

Functio	Name	Description	Default	Modify
n		-	20.000	cuy
		Setting range: 0.0–100.0% (FDT2 electrical		
	5	level)		
	Detection	When the output frequency is within the		
	value for	detection range, the multifunction digital		
P08.36	frequency	output terminal outputs the signal of	0.00Hz	0
	being	"Frequency reached".		
	reached	Setting range: 0.00Hz–P00.03		
	Detection			
P08.37	value for any	Setting range: 0.00Hz–P00.03	1.00Hz	0
	frequency			
	reached			
	Detection			
P08.38	time for any	Setting range: 0.0–3600.0s	0.5s	0
	frequency			
	reached			
D00 30	Enabling	Setting range: 0–1		
P08.39	dynamic	0: Disable	0	0
	braking	1: Enable		
		Specifies the starting bus voltage of dynamic		
		braking. Adjust this value properly to achieve		
	Dynamic	effective braking for the load. The default		
P08.40	braking	value varies depending on the voltage class.	Model	0
1 00.40	threshold	Setting range: 200.0–2000.0V	depended	
	voltage	For 220V models: 380.0V		
		For 380V models: 700.0V		
		Tot 300 v models. 700.0 v		
		Setting range: 0x00-0x12		
		Ones place: Run mode		
		0: Normal mode		
		1: Permanent running after power-on		
	Cooling-fan	2: Run mode 2		
P08.41	running	Tens place: Speed regulation mode	0x10	0
	mode	0: Disable speed regulation		
		1: Speed regulation mode 1		
		✓Note: In addition to the normal running		
		requirements, run mode 2 has the feature that		
		the fan still runs even when the ramp		

Functio n	Name	Description	Default	Modify
		frequency is greater than 0.		
P08.42	PWM selection	Setting range: 0x000–0x321 Ones place: PWM mode selection 0: Switch from SVPWM to DPWM 1: SPWM overmodulation throughout the entire process Tens place: PWM low-speed carrier frequency limit 0: Low-speed carrier frequency limit mode 1 1: Low-speed carrier frequency limit mode 2 2: No limit on low-speed carrier frequency Hundreds place: Deadzone compensation method 0: Compensation method 1 1: Compensation method 2	0x101	©
P08.43	Overmodula tion selection	2–3: Reserved Setting range: 0x0000–0x1111 Ones place: Overmodulation enabling 0: Invalid 1: Enable Tens place: Overmodulation depth 0: Mild overmodulation 1: Deepened overmodulation Hundreds place: Carrier frequency limit 0: Yes 1: No limit Thousands place: Reserved	0x1001	©
P08.44	ED keypad control setting	Setting range: 0x0000–0x1223 Ones place: Frequency setting selection 0: Both the UP/DOWN key and digital potentiometer can be used for the control. 1: Only the UP/DOWN key can be used for the control. 2: Only the digital potentiometer can be used for the control. 3: Neither the UP/DOWN key nor the digital potentiometer can be used for the control.	0x0000	0

Functio				
n	Name	Description	Default	Modify
		Tens place: Frequency control selection		
		0: Valid only when P00.06=0 or P00.07=0		
		1: Valid for all frequency setting methods		
		2: Invalid for multi-step speed running when		
		multi-step speed running has the priority		
		Hundreds place: Action selection for stop		
		0: Setting is valid.		
		1: Valid during running, cleared after stop		
		2: Valid during running, cleared after a stop		
		command is received		
		Thousands place: Indicates whether to enable		
		the integral function through the UP/DOWN		
		key and digital potentiometer.		
		0: Enable the integral function		
		1: Disable the integral function		
	LED keypad			
P08.45	potentiometer	Setting range: 0.01–10.00	0.10	0
	integral rate			
		Setting range: 0x000–0x221		
		Ones place: Frequency setting selection		
		0: The setting made through UP/DOWN is		
		valid.		
		1: The setting made through UP/DOWN is		
		invalid.		
	UP/DOWN	Tens place: Frequency control selection		
P08.46	terminal	0: Valid only when P00.06=0 or P00.07=0	0x000	0
	control	1: Valid for all frequency setting methods		
	setting	2: Invalid for multi-step speed running when		
		multi-step speed running has the priority		
		Hundreds place: Action selection for stop 0: Setting is valid.		
		1: Valid during running, cleared after stop		
		2: Valid during running, cleared after a stop		
		command is received		
	Frequency			
	increment			
P08.47	integral rate	Setting range: 0.01–50.00Hz/s	0.50Hz/s	0
	of the UP		1	
	terminal			

Functio n	Name	Description	Default	Modify
P08.48	Frequency integral rate of the DOWN terminal	Setting range: 0.01–50.00Hz/s	0.50Hz/s	0
P08.49	Action selection at power-off during frequency setting	Setting range: 0x000–0x111 Ones place: Reserved Action selection at power-off during frequency adjusting through Modbus communication 0: Save the setting at power-off. 1: Clear the setting at power-off. Hundreds place: Reserved	0x000	0
P08.50	Initial electricity consumption high bit	Specifies the initial electricity consumption. Initial electricity consumption = P08.50 × 1000 + P08.51 Setting range: 0–59999kkWh	0kkWh	0
P08.51	Initial electricity consumption low bit	Specifies the initial electricity consumption. Initial electricity consumption = P08.50 × 1000 + P08.51 Setting range: 0.0–999.9kWh	0.0kkWh	0
P08.52	Magnetic flux braking	Used to enable the magnetic flux braking. Magnetic flux braking can be used for motor stop, as well as for motor rotation speed change. The current of the stator other than the rotor increases during magnetic flux braking. Therefore, the cooling is better. 0: Invalid 100–300: A greater coefficient indicates greater braking strength. Setting range: 0–300	0	0
P08.53	Magnetic flux braking ratio	Setting range: 5–15	8	0
P08.54	VFD input power factor	Used to adjust the current display value on the AC input side. Setting range: 0.00–1.00	0.56	0
P08.55	STO lock selection	Setting range: 0–1 0: Lock upon STO (E40) alarm	0	0

Functio				
n	Name	Description	Default	Modify
		1: No lock on STO (E40) alarm Note: "Lock on STO (E40) alarm" indicates the STO alarm must be reset after the VFD recovers from the STO (E40) fault. "No lock on STO (E40) alarm" indicates that the STO alarm disappears automatically after the VFD		
P08.58	Enabling auto carrier frequency reduction	recovers from the STO fault. Setting range: 0–1 0: Disable 1: Enable Note: Automatic carrier frequency reduction indicates that the VFD automatically reduces the carrier frequency when detecting the heat sink temperature exceeds the rated temperature. When the temperature decreases to a specified value, the carrier frequency restores to the setting. This function can reduce the VFD overheat alarm reporting chances. Setting range: 1.0–15.0kHz	0	0
P08.59	Min. carrier frequency	Note: It is 4k for 220V 5.5kW and lower models; it is 2k for the other models.	Model depended	0
P08.60	Temperature point of auto carrier frequency reduction	Setting range: 40.0–85.0°C	70.0°C	0
P08.61	Interval of carrier frequency reduction	Setting range: 0–30s	10s	0
P08.62	Frequency threshold of the start of droop control	Setting range: 0.00–50.00Hz Note: The droop control function is started when P08.63 is greater than 0.00Hz.	2.00Hz	0
P08.63	Frequency decrease ratio in drop control	Specifies the variation rate of the VFD output frequency based on the load. It is mainly used in balancing the power when multiple motors drive the same load.	0.00Hz	0

Functio n	Name	Description	Default	Modify
		Setting range: 0.00–50.00Hz		
P08.64	Output current filter time	Setting range: 0.000–10.000s	0.000s	0
P08.66	DPWM switching threshold frequency	Setting range: 0.0–100.0%	25.0%	0
P08.67	Random PWM depth	Setting range: 0.0–100.0%	0.0%	0
P08.69	DC bus voltage sampling delay compensation	Setting range: 0–6000	300	0
P08.70	Grid voltage frequency selection	0x00-0x21 Ones place: Frequency selection 0: 50Hz 1: 60Hz Tens place:Voltage selection 0: Indicates the 220V level, suitable for the voltage range of 208-240V 1: Indicates the 380V level, suitable for the voltage range of 380-415V 2: Indicates the 460V level, suitable for the voltage range of 440-480V Note: When the VFD model is -2/S2, the tens place of P08.70 automatically becomes 0, and the other settings (such as 1 and 2) are invalid. When the VFD model is -4, the tens place of P08.70 is 1 by default, and the other settings (such as 0) is invalid.	0x10	©
P08.77	Deadzone compensation calibration coefficient		100.0%	0

Group P09—PID

Functio n	Name	Description	Default	Modify
P09.00	PID reference source selection	Specifies the target given channel during the PID process. Setting range: 0–15 0: Setting through P09.01 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved *Note: The set target of process PID is a relative value, for which 100% equals 100% of the feedback signal of the controlled system. The system always calculates a related value (0–100.0%).	0	0
P09.01	PID digital setting	Setting range: -100.0%-100.0%	0.0%	0
P09.02	PID feedback source selection	Specifies the PID feedback channel. Setting range: 0–15 0: Setting through P09.01 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication	0	0

Functio				
n	Name	Description	Default	Modify
		11: Reserved		
		12: Ethernet communication		
		13: Reserved		
		14: EtherCAT/PROFINET/EtherNet IP		
		communication		
		15: Reserved		
		△Note: The reference channel and feedback		
		channel cannot be duplicated. Otherwise,		
		effective PID control cannot be achieved.		
		Setting range: 0–1		
		0: PID output is positive. When the feedback		
		signal is greater than the PID reference value,		
		3		
	DID output	the output frequency of the VFD will decrease		
P09.03	PID output	to balance the PID. Example: PID control on	0	
P09.03		strain during unwinding.	0	
	selection	1: PID output is negative. When the feedback		
		signal is greater than the PID reference value,		
		the output frequency of the VFD will increase		
		to balance the PID. Example: PID control on		
		tension during unwinding		
	Low	Specifies the proportional gain P for the		
P09.04	frequency	low-frequency range of PID input.	1.00	0
	proportional	Setting range: 0.00–100.00		
	gain (Kp)			
	Low	Determines the speed of the PID regulator's		
D00.05	frequency	integration adjustment to the deviation	0.00	
P09.05	integral time	between the PID feedback and reference in the	0.90s	0
	(Ti)	low-frequency range. Setting range: 0.00–10.00s		
		Determines the strength of the PID regulator's		
	Low	adjustment to the change rate of the deviation		
P09.06	frequency	between the PID feedback and reference in the	0.00s	0
	differential	low-frequency range.		
	time (Td)	Setting range: 0.00–10.00s		
	Low			
	frequency			
P09.07	point for PID	Setting range: 0.00Hz–P09.11	5.00Hz	0
	parameter			
	switching			

Functio n	Name	Description	Default	Modify
P09.08	High frequency proportional	Specifies the proportional gain P for the low-frequency range of PID input.	1.80	0
P09.09	gain (Kp) High frequency integral time (Ti)	Setting range: 0.00–100.00 Determines the speed of the PID regulator's integration adjustment to the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.90s	0
P09.10	High frequency differential time (Td)	Determines the strength of the PID regulator's adjustment to the change rate of the deviation between the PID feedback and reference in the low-frequency range. Setting range: 0.00–10.00s	0.00s	0
P09.11	High frequency point for PID parameter switching	Setting range: P09.07–P00.03(Hz)	10.00Hz	0
P09.12	Sampling period (T)	Specifies the sampling cycle of feedback. The regulator calculates in each sampling cycle. A longer sampling cycle indicates slower response. Setting range: 0.001–1.000s	0.001s	0
P09.13	PID control deviation limit	Specifies the max. deviation allowed by the output of PID system relative to the closed loop reference, which can adjust the accuracy and stability of the PID system. Setting range: 0.0–100.0%	0.0%	0
P09.14	PID output upper limit	The function code is used to set the upper limit of PID regulator output values. 100.0% corresponds to the max. output frequency (P00.03) or max. voltage (P04.17). Setting range: P09.15–100.0%	100.0%	0
P09.15	PID output lower limit	Specifies the lower limit of PID regulator output values. 100.0% corresponds to the max. output frequency (P00.03) or max. voltage (P04.17).	0.0%	0

Functio n	Name	Description	Default	Modify
		Setting range: -100.0%-P09.14		
P09.16	Feedback offline detection value	Specifies the PID feedback offline detection value. Setting range: 0.0–100.0%	0.0%	0
P09.17	Feedback offline detection time	Setting range: 0.0–3600.0s	1.0s	0
P09.18	PID control selection	Setting range: 0x0000–0x1111 Ones place: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens place: 0: Same as the main reference direction 1: Contrary to the main reference direction Hundreds place: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands place: 0: A+B frequency. ACC/DEC of main reference A frequency source pre-charging is invalid. 1: A+B frequency. ACC/DEC of main reference A frequency source buffering is valid.	0x0001	0
P09.19	ACC/DEC time of PID command	Setting range: 0.0–1000.0s	0.0s	0
P09.20	PID output filter time	Setting range: 0.000–10.000s	0.000s	0

Group P10—Simple PLC and multi-step speed

Functio n	Name	Description	Default	Modify
P10.00	mple PLC mode	Setting range: 0–2 0: Stop after running once. The VFD stops automatically after running for one cycle, and it can be started only after receiving the running command. 1: Keep running in the final value after running for one cycle. The VFD keeps the running frequency and direction of the last section after a single cycle. 2: Cyclic running. The VFD enters the next cycle after completing one cycle until receiving the stop command.	0	0
P10.01	Simple PLC memory selection	Setting range: 0–1 0: Do not memorize at power outage 1: Memorize at power outage. The PLC memories its running stage and running frequency before power-off.	0	0
P10.02	Multi-step speed 0	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.03	Running time of step 0		0.0s(min)	0
P10.04	Multi-step speed 1	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.05	Running time of step 1	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.06	Multi-step speed 2	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.07	Running time of step 2	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.08	Multi-step speed 3	Setting range: -300.0%—300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0

Functio n	Name	Description	Default	Modify
P10.09	Running time of step 3	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.10	Multi-step speed 4	Setting range: -300.0%-300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.11	Running time of step 4	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.12	Multi-step speed 5	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.13	Running time of step 5	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.14	Multi-step speed 6	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.15	Running time of step 6	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.16	Multi-step speed 7	Setting range: -300.0%—300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.17	Running time of step 7	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.18	Multi-step speed 8	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.19	Running time of step 8	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.20	Multi-step speed 9	Setting range: -300.0%-300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.21	Running time of step 9	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.22	Multi-step speed 10	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.23	Running time of step 10	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0

Functio n	Name	Description	Default	Modify
P10.24	Multi-step speed 11	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.25	Running time of step 11	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.26	Multi-step speed 12	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.27	Running time of step 12	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.28	Multi-step speed 13	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.29	Running time of step 13	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.30	Multi-step speed 14	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.31	Running time of step 14	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.32	Multi-step speed 15	Setting range: -300.0%–300.0% The setting 100.0% corresponds to the max. output frequency (P00.03).	0.0%	0
P10.33	Running time of step 15	Setting range: 0.0–6553.5s(min) The time unit is specified by P10.37.	0.0s(min)	0
P10.34	ACC/DEC time of steps 0–7 of simple PLC	Setting range: 0x0000–0xFFFF	0x0000	0
P10.35	ACC/DEC time of steps 8–15 of simple PLC	Setting range: 0x0000–0xFFFF	0x0000	0
P10.36	.C restart mode	Setting range: 0–1 0: Restart from the first step, namely if the VFD stops during running (caused by stop command, fault or power down), it will run	0	0

Functio n	Name	Description	Default	Modify
		from the first step after restart.		
		1: Continue running from the step frequency		
		when interruption occurred, namely if the VFD		
		stops during running (caused by stop		
		command or fault), it will record the running		
		time of current step, and enters this step		
		automatically after restart, then continue		
		running at the frequency defined by this step		
		in the remaining time.		
		Setting range: 0–1		
	Multi-step	0: second; the running time of each step is		
P10.37	running time	counted in seconds	0	0
	unit	1: minute; the running time of each step is		
		counted in minutes		

Group P11—Protection

Functio n	Name	Description	Default	Modify
P11.00	Protection against phase loss	Setting range: 0x000–0x011 Ones place: 0: Disable software input phase loss protection. 1: Enable software input phase loss protection. Tens place: 0: Disable output phase loss protection. 1: Enable output phase loss protection. Hundreds place: Reserved Note: Even if the ones place is set to 1 for single-phase models, phase loss detection will not occur (refer to P17.68 for the model's single-phase/three-phase attributes). When no motor is connected, output phase loss cannot be detected, and input phase loss cannot be detected during no-load or	0x011	0

Functio n	Name	Description	Default	Modify
		light-load running.		
P11.01	Frequency drop at transient power-off	Setting range: 0–1 0: Disable 1: Enable	0	0
P11.02	Enabling energy- consumption braking for stop	Setting range: 0–1 0: Disable 1: Enable	0	©
P11.03	Overvoltage stall protection	Setting range: 0–1 0: Disable 1: Enable	1	0
P11.04	Overvoltage stall protection voltage	380V: 120%–150% (of standard bus voltage) 220V: 120%–150% (of standard bus voltage)	136%	0
P11.05	urrent limit selection	During accelerated running, as the load is too large, the actual acceleration rate of motor is lower than that of output frequency. To prevent the VFD trip due to overcurrent during acceleration, take the current limit measures. Setting range: 0x00–0x11 Ones place: Current limit action selection 0: Invalid 1: Always valid Tens: Hardware current limit overload alarm selection 0: Valid 1: Invalid	0x01	©
P11.06	Automatic current limit threshold	Setting range: 50.0%–200.0% (of the VFD rated output current)	160.0%	0
P11.07	Frequency decrease ratio in current limiting	Setting range: 0.00–50.00Hz/s	10.00Hz/s	©

Functio				
n	Name	Description	Default	Modify
P11.08	VFD/motor OL/UL alarm selection	Setting range: 0x0000–0x1132 Ones place: Overload/underload (OL/UL) alarm detection method 0: Motor OL/UL alarm, relative to the motor rated current. 1: VFD OL/UL alarm, relative to the VFD rated current. 2: Motor output torque OL/UL alarm, relative to motor rated torque. Tens place: Action selection upon OL/UL 0: The VFD continues to work, while keeping the OL/UL alarm. 1: For a UL fault, the VFD continues to work, while keeping the alarm; for an OL fault, it reports the fault and stops. 2: For an OL fault, the VFD continues to work, while keeping the alarm; for a UL fault, it reports the fault and stops. 3. The VFD stops running for an OL/UL alarm Hundreds place: Detection method 0: Always detect 1: Detect during constant-speed running Thousands place: VFD overload current reference selection 0: Related to current calibration coefficient 1: Irrelated to current calibration coefficient	0x0000	0
P11.09	Underload alarm detection threshold	If the VFD or motor output current is larger than the overload pre-alarm detection level (P11.09), and the duration exceeds the overload pre-alarm detection time (P11.10), overload pre-alarm signal will be outputted. Setting range: P11.11–200% (relative value determined by the ones place of P11.08) Note: 120% by default in light load mode; 150% by default in heavy load mode.	Model depended	0
P11.10	Overload alarm detection time	Setting range: 0.1–3600.0s	1.0s	0

Functio n	Name	Description	Default	Modify
P11.11	Underload alarm detection threshold	Underload pre-alarm signal will be outputted if the output current of the VFD or motor is lower than underload pre-alarm detection level (P11.11), and the duration exceeds underload pre-alarm detection time (P11.12). Setting range: 0%–P11.09 (relative value determined by the ones place of P11.08)	50%	0
P11.12	Underload alarm detection time	Underload pre-alarm signal will be outputted if the output current of the VFD or motor is lower than underload pre-alarm detection level (P11.11), and the duration exceeds underload pre-alarm detection time (P11.12). Setting range: 0.1–3600.0s	1.0s	0
P11.13	Fault output terminal action upon fault occurring	Specifies the action of fault output terminals at undervoltage and fault reset. Setting range: 0x00–0x11 Ones place: 0: Act at undervoltage 1: Do not act at undervoltage Tens place: 0: Act during automatic reset 1: Do not act during the automatic reset period	0x00	0
P11.14	Speed deviation detection value	Specifies the speed deviation detection value. Setting range: 0.0–50.0%	10.0%	0
P11.15	Speed deviation detection time	Specifies the speed deviation detection time. If the speed deviation detection time is smaller than the set value, the VFD continues running. Setting range: 0.0–10.0s Note: Speed deviation protection is invalid when P11.15 is 0.0.	2.0s	0
P11.16	Automatic frequency- reduction during voltage drop	Setting range: 0–1 0: Invalid 1: Enable	0	0

Functio			- c 1:	
n	Name	Description	Default	Modify
P11.17	Proportional coefficient of voltage regulator during undervoltage stall	Specifies the proportional coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–127	20	0
P11.18	Integral coefficient of voltage regulator during undervoltage stall	Specifies the integral coefficient of the bus voltage regulator during undervoltage stall. Setting range: 0–1000	5	0
P11.19	Proportional coefficient of current regulator during undervoltage stall	Specifies the proportional coefficient of the active current regulator during undervoltage stall. Setting range: 0–1000	20	0
P11.20	Integral coefficient of current regulator during undervoltage stall	Specifies the integral coefficient of the active current regulator during undervoltage stall. Setting range: 0–2000	20	0
P11.21	Proportional coefficient of voltage regulator during overvoltage stall	Specifies the proportional coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–127	60	0
P11.22	Integral coefficient of voltage regulator during overvoltage stall	Specifies the integral coefficient of the bus voltage regulator during overvoltage stall. Setting range: 0–1000	5	0

Functio n	Name	Description	Default	Modify
P11.23	Proportional coefficient of current regulator during overvoltage stall	Specifies the proportional coefficient of the active current regulator during overvoltage stall. Setting range: 0–1000	60	0
P11.24	Integral coefficient of current regulator during overvoltage stall	Specifies the integral coefficient of the active current regulator during overvoltage stall. Setting range: 0–2000	250	0
P11.25	VFD overload integral enabling	Setting range: 0–1 0: Disable. The overload timing value is reset to zero after the VFD is stopped. In this case, the determination of VFD overload takes more time, and therefore the effective protection over the VFD is weakened. 1: Enable. The overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of VFD overload takes less time, and therefore the protection over the VFD can be performed more quickly.	0	©
P11.28	SPO switch-on detection delay time	Setting range: 0.0–60.0s Note: The SPO detection is started only after the VFD runs for the delay time P11.28 to avoid false alarms caused by the unstable frequency.	5.0s	0
P11.29	SPO imbalance factor	Setting range: 0–10	6	0

Functio n	Name	Description	Default	Modify
	Software			
P11.63	input phase loss	Setting range: 0.500–60.000s	10.000s	0
	detection			
	time			
	Al1			
P11.67	disconnectio	Setting range: 0–100%	0%	
11.07	n detection		070	
	threshold			
	Al2			
P11.68	disconnectio	Setting range: 0–100%	0%	0
F 11.00	n detection		0%	
	threshold			
	Al3			
D11 CO	disconnectio	C 11' 0 1000/	0%	
P11.69	n detection	Setting range: 0–100%	0%	
	threshold			

Group P13—SM

Functio n	Name	Description	Default	Modify
P13.00	SM injected- current decrease ratio	Specifies the reduction rate of the input reactive current. When the active current of the synchronous motor increases to some extent, the input reactive current can be reduced to improve the power factor of the motor. Setting range: 0.0–100.0% (of the motor rated current)	80.0%	0
P13.01	Initial pole detection method	Setting range: 0–2 0: Do not detect 1: High-frequency superposition 2: Pulse superposition	2	0
P13.02	Pull-in current 1	Specifies the pole position orientation current. It is valid within the lower limit of pull-in current switch-over frequency threshold. If	30.0%	0

Functio				
n	Name	Description	Default	Modify
		you need to increase the start torque, increase		
		the value of this function parameter properly.		
		Setting range: -100.0%-100.0%		
		✓Note: The value is relative to the motor rated		
		current.		
		Specifies the pole position orientation current.		
		It is valid within the upper limit of pull-in		
	D. II i.	current switching frequency threshold. You do		
P13.03	Pull-in	not need to change the value in most cases.	0.0%	0
	current 2	Setting range: -100.0%-100.0%		
		✓Note: The value is relative to the motor rated		
		current.		
	Pull-in	5 41 00 200 004		
P13.04	current	Setting range: 0.0–200.0%	20.00/	0
P13.04	switching	Note: The value is relative to the motor rated	20.0%	
	frequency	frequency.		
		Specifies the pulse current threshold when the		
	l II mb	initial magnetic pole position is detected in		
	High-	the pulse mode. The value is a percentage in		
P13.06	frequency	relative to the rated current of the motor.	80.0%	0
	superposition	Setting range: 0.0–300.0%		
	voltage	∠Note: The value is relative to the motor rated		
		voltage.		
P13.07	Control	Setting range: 0.0–400.0	0.0	0
F 13.07	parameter 0	Setting range. 0.0–400.0	0.0	0
	Vector	Setting range: 0x0000–0xFFFF		
	control	Bit 0: SM counter-emf self-adaptation		
P13.08	optimization	Bit 1–Bit 5: Reserved	0x0000	0
	mode	Bit 6: Stator resistance self-adaptation		
		Bit 7–Bit 15: Reserved		
	Initial			
P13.10	compensation	Setting range: 0.0–359.9	0.0	0
	angle of SM			
	Mal-	Used to adjust the responsiveness of		
P13.11	adjustment	anti-maladjustment function. If the load	0.5s	0
	detection	inertia is large, increase the value of this	0.53	
	time	parameter properly, however, the		

Functio n	Name	Description	Default	Modify
		responsiveness may slow down accordingly. Setting range: 0.0–10.0s		
P13.12	SM high- frequency compensation coefficient	Setting range: 0.0–100.0%	0.0%	0
P13.14	SVC speed feedback bandwidth	Setting range: 10.0–200.0rad/s	62.5 rad/s	0
P13.15	SM counter-emf adaptation bandwidth	Setting range: 0.1–10.0	0.1	0
P13.19	Observer coefficient 1	Setting range: 0–200	2	0
P13.20	Observer coefficient 2	Setting range: 0–200	8	0
P13.21	Observer coefficient 3	Setting range: 0.0–20.0	0.1	0
P13.22	Observer coefficient 4	Setting range: 0.0–500.0	0.0	0
P13.26	Vector control IF enabling	Setting range: 0x0–0x2 Ones place: Enable IF 0: Invalid 1: Valid during ACC/DEC 2: Valid only during ACC	0x0	0
P13.27	Vector control IF current setting	Setting range: 50.0%–150.0%	100.0%	0
P13.28	Vector control IF switch-out frequency point	Setting range: 0.0–100.0%	15.0%	0

Group P14—Serial

Functio n	Name	Description	Default	Modify
P14.00	Local communicat ion address	Setting range: 1–247 If the slave communication address in the message frame sent from the master is set to 0, it serves as a broadcast communication address. All slaves on the Modbus bus will receive the frame, but the slaves will not respond to it. The communication addresses on the communication network are unique, which is the basis of the point-to-point communication.	1	0
		Note: The slave address cannot be set to 0.		
P14.01	Communicat ion baud rate setting	Specifies the data transmission speed between the host controller and the VFD. Setting range: 0–7 0: 1200 bps 1: 2400 bps 2: 4800 bps 3: 9600 bps 4: 19200 bps 5: 38400 bps 6: 57600 bps 7: 115200 bps Note: The baud rate set on the VFD must be consistent with that on the host controller. Otherwise, the communication fails. A greater baud rate indicates faster communication.	4	0
P14.02	Data bit check	Setting range: 0–5 0: No check (N, 8, 1) for RTU 1: Even check (E, 8, 1) for RTU 2: Odd check (O, 8, 1) for RTU 3: No check (N, 8, 2) for RTU 4: Even check (E, 8, 2) for RTU 5: Odd check (O, 8, 2) for RTU Note: The data format set on the VFD must be consistent with that on the host controller.	1	0

Functio n	Name	Description	Default	Modify
		Otherwise, the communication fails.		
P14.03	Communicat ion response delay	Setting range: 0–200ms	5 ms	0
P14.04	RS485 communicat ion timeout time	Setting range: 0.0–60.0s Note: When it is set to 0.0, the timeout is invalid.	0.0s	0
P14.05	Transmission fault processing	Setting range: 0–3 0: Report an alarm and coast to stop 1: Keep running without reporting an alarm 2: Stop in enabled stop mode without reporting an alarm (applicable only to communication mode) 3: Stop in enabled stop mode without reporting an alarm (applicable to any mode)	0	0
P14.06	Modbus communicat ion processing action selection	Setting range: 0x0000–0x1111 Ones place: 0: Respond to write operations 1: Not respond to write operations Tens place: 0: Communication password protection is invalid. 1: Communication password protection is valid. Hundreds place: 0: User-defined addresses specified in group P16 are invalid. 1: User-defined addresses specified in group P16 are valid. Thousands place: 0: CRC failure, with response of error type 0x06 1: CRC checksum failure, without response	0x0000	0

Functio				
n	Name	Description	Default	Modify
	Channel selection for	0x00–0x12 Ones place: Channel for mapping function codes to PZDs		
P14.48	mapping between PZDs and function codes	0: Reserved 1: Reserved 2: Group P23 Tens place: Save function at power off 0: Disable 1: Enable	0x12	0
P14.49	Mapped function code of received PZD2	Setting range: 0x0000–0xFFFF	0x0000	0
P14.50	Mapped function code of received PZD3	Setting range: 0x0000–0xFFFF	0x0000	0
P14.51	Mapped function code of received PZD4	Setting range: 0x0000–0xFFFF	0x0000	0
P14.52	Mapped function code of received PZD5	Setting range: 0x0000–0xFFFF	0x0000	0
P14.53	Mapped function code of received PZD6	Setting range: 0x0000–0xFFFF	0x0000	0
P14.54	Mapped function code of received PZD7	Setting range: 0x0000–0xFFFF	0x0000	0

Functio n	Name	Description	Default	Modify
••	Mapped			
	function			
P14.55	code of	Setting range: 0x0000–0xFFFF	0x0000	0
	received			
	PZD8			
	Mapped			
	function			
P14.56	code of	Setting range: 0x0000–0xFFFF	0x0000	0
	received			
	PZD9			
	Mapped			
	function			
P14.57	code of	Setting range: 0x0000–0xFFFF	0x0000	0
	received			
	PZD10			
	Mapped		0x0000	
	function	Setting range: 0x0000–0xFFFF		0
P14.58	code of			
	received			
	PZD11			
	Mapped			
	function	Setting range: 0x0000–0xFFFF 0x0		
P14.59	code of		0x0000	0
	received			
	PZD12			
	Mapped			
P14.60	function	 Setting range: 0x0000–0xFFFF	0x0000	0
F 14.00	code of sent	Setting range. 0x0000-0x1111	000000	
	PZD2			
	Mapped			
P14.61	function	 Setting range: 0x0000–0xFFFF	0x0000	0
P14.01	code of sent	Setting range. 0x0000-0xFFFF	00000	
	PZD3			
	Mapped			
P14.62	function	Setting range: 0x0000–0xFFFF	0x0000	0
	code of sent PZD4			
	Mapped			
	function			
P14.63	code of sent	Setting range: 0x0000–0xFFFF	0x0000	0
	PZD5			

Functio				
n	Name	Description	Default	Modify
	Mapped			
P14.64	function	 Setting range: 0x0000–0xFFFF	0x0000	0
F 14.04	code of sent	Setting range: 0x0000—0xFFFF	00000	
	PZD6			
	Mapped			
P14.65	function	 Setting range: 0x0000–0xFFFF	0x0000	0
1 14.03	code of sent	Setting range. 0x0000 0x1111	0.0000	
	PZD7			
	Mapped			
P14.66	function	 Setting range: 0x0000-0xFFFF	0x0000	0
1 14.00	code of sent	Setting runge, 0x0000 0x1111	00000	
	PZD8			
	Mapped			
P14.67	function	 Setting range: 0x0000–0xFFFF	0x0000	0
1 1 1.07	code of sent	Secting runge, exceed extri	CACCCC	
	PZD9			
	Mapped			
P14.68	function	 Setting range: 0x0000–0xFFFF	0x0000	0
	code of sent			
	PZD10			
	Mapped			
P14.69	function	Setting range: 0x0000–0xFFFF	0x0000	0
	code of sent			
	PZD11			
	Mapped			
P14.70	function	S. W	0.0000	
P14.70	code of sent	Setting range: 0x0000–0xFFFF	0x0000	0
	PZD12			
	PZD			
	communicat			
D1 4 71	ion control	Setting range: 0–1		
P14.71	word	0: Decimal format	0	0
	expression	1: Binary format		
	format			
	Enabling	Setting range: 0–2		
P14.76	program	0: Disable	0	0
	upgrade	1: Upgrade main control board		

Functio n	Name	Description	Default	Modify
		2: Upgrade secondary board 1		
P14.77	MCU bootload software version	Setting range: 0.00–655.35	0.00	•
P14.78	DSP bootload software version	Setting range: 0.00–655.35	0.00	•
P14.79	Display of no upgrade bootload fault	Setting range: 0–1 0: Display 1: Do not display	0	0

Group P16—Customized communication

Functio n	Name	Description	Default	Modify
P16.00		Setting range: 0x0000–0xFFFF Note: When using the user-defined read/write address, you must set the hundreds place of P14.06.	0xFFFF	0
P16.01	Local address corresponding to user-defined read address 1		0xFFFF	0
P16.02	User-defined read address 2	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.03	Local address corresponding to user-defined read address 2	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.04	User-defined read address 3	Setting range: 0x0000–0xFFFF	0xFFFF	0

Functio	Name	Description	Default	Modify
n	Name	Description	Delaute	Mouny
	Localaddress			
	corresponding			
P16.05	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
	user-defined			
	read address 3			
P16.06	User-defined	Setting range: 0x0000-0xFFFF	0xFFFF	0
	read address 4			
	Local address			
	corresponding			
P16.07	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
	user-defined			
	read address 4			
P16.08	User-defined	Setting range: 0x0000–0xFFFF	0xFFFF	0
	read address 5			
	Local address	Setting range: 0x0000–0xFFFF		
D.1.C.00	corresponding			
P16.09	to		0xFFFF	0
	user-defined			
	read address 5			
P16.10	User-defined	Setting range: 0x0000-0xFFFF	0xFFFF	0
	read address 6			
	Localaddress			
	corresponding			
P16.11	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
	user-defined			
	read address 6			
D1C 10	User-defined	C. H	0.5555	
P16.12	read address 7	Setting range: 0x0000–0xFFFF	0xFFFF	0
	Localaddress			
	corresponding			
P16.13	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
	user-defined			
	read address 7			
D1C 14	User-defined	C-44:	0	
P16.14	read address 8	Setting range: 0x0000–0xFFFF	0xFFFF	0
	Localaddress			
	corresponding			
P16.15	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
	user-defined			
	read address 8			

Name Description Default Modify	Functio	Nama	Description .	Default	Madic.
P16.16 read address 9 Localaddress corresponding to user-defined read address 10 Localaddress Setting range: 0x0000-0xFFFF 0xFFFF 0	n	Name	Description	Detault	моану
P16.17 to Setting range: 0x0000-0xFFFF	D16 16	User-defined	Satting range: 0,0000 OvEFFF	OVECE	
Corresponding to user-defined read address 9 User-defined read address 10 Localaddress corresponding to user-defined read address 10 P16.19 Localaddress corresponding to user-defined read address 10 User-defined read address 10 Diser-defined read address 10 Localaddress corresponding to user-defined read address 11 Diser-defined read address 12 Localaddress corresponding to user-defined read address 25 Localaddress corresponding to user-defined read address 35 Localaddress corresponding to user-defined read address 35 Setting range: 0x0000-0xFFFF 0xFFFF 0xFFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF 0xFFFF	P10.10	read address 9	Setting range. 0x0000-0xFFFF	UXFFFF	0
P16.17 to user-defined read address 9 User-defined read address 9 Local address 5 Setting range: 0x0000-0xFFFF		Localaddress			
user-defined read address 9 User-defined read address 9 P16.18 User-defined read address 10 Setting range: 0x0000-0xFFFF 0xFFFF © P16.19 Local address corresponding to user-defined read address 10 Setting range: 0x0000-0xFFFF 0xFFFF © P16.20 User-defined read address corresponding to user-defined read address 11 Setting range: 0x0000-0xFFFF 0xFFFF © P16.21 User-defined read address 11 Setting range: 0x0000-0xFFFF 0xFFFF © P16.22 User-defined read address corresponding to user-defined read address corresponding to user-defined read address 12 Setting range: 0x0000-0xFFFF 0xFFFF © P16.23 User-defined read address 12 Setting range: 0x0000-0xFFFF 0xFFFF © User-defined read address 12 Setting range: 0x0000-0xFFFF 0xFFFF © User-defined read address 12 Setting range: 0x0000-0xFFFF 0xFFFF ©		corresponding			
read address 9 User-defined read address 10 Local address corresponding to user-defined read address 11 P16.19 Local address corresponding to user-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 2 Local address corresponding to user-defined read address 2 Setting range: 0x0000-0xFFFF OxFFFF	P16.17	to	Setting range: 0x0000–0xFFFF	0xFFFF	0
User-defined read address corresponding to user-defined read address 11 Deficient Defined read address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address corresponding to user-defined read address corresponding to user-defined read address sourcesponding to user-defined read address corresponding to user-defined read address sourcesponding to user-defined read address so		user-defined			
P16.18 read address 10		read address 9			
Local address corresponding to user-defined read address 10 P16.20 User-defined read address 11 Local address corresponding to user-defined read address 11 Local address corresponding to user-defined read address 11 P16.21 User-defined read address 11 Local address corresponding to user-defined read address 11 P16.22 User-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 25 Local address corresponding to user-defined read address 25 Local address corresponding to user-defined read address 25 Local address Setting range: 0x0000-0xFFFF 0xFFF 0xFFFF 0xFFFFFFFF		User-defined			
Local address corresponding to user-defined read address 10 P16.20 User-defined read address 11 Local address corresponding to user-defined read address 11 Local address corresponding to user-defined read address 11 P16.21 User-defined read address 11 Local address corresponding to user-defined read address 11 P16.22 User-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 12 Local address corresponding to user-defined read address 25 Local address corresponding to user-defined read address 25 Local address corresponding to user-defined read address 25 Setting range: 0x0000-0xFFFF 0xFFF	P16.18	read address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.19 corresponding to user-defined read address 10		10			
P16.19 to user-defined read address 10 User-defined read address 11 Local address corresponding to user-defined read address 11 P16.21 User-defined read address 2 Setting range: 0x0000-0xFFFF 0xFFFF 0xF		Localaddress			
user-defined read address 10 User-defined read address 11 Local address corresponding to user-defined read address 11 User-defined read address corresponding to user-defined read address 11 User-defined read address 11 User-defined read address 12 Local address 20x0000-0xFFFF 0xFFFF 0xFFFFF 0xFFFFF 0xFFFF 0xFFFFF 0xFFFFFF 0xFFFFF 0xFFFFF 0xFFFFF 0xFFFFF 0xFFFFFFFF		corresponding			
user-defined read address 10 User-defined read address 11 Local address corresponding to user-defined read address 11 User-defined read address 11 User-defined read address 12 User-defined read address 12 User-defined read address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0xFFFFF 0xFFFFFFFF	D16 19	to	Setting range: 0v0000-0vFFFF	Overer	
P16.20 User-defined read address corresponding to user-defined read address 11 P16.21 User-defined read address 21 Duser-defined read address 31 User-defined read address corresponding to user-defined read address 31 User-defined read address 32 User-defined read address 32 Etting range: 0x0000-0xFFFF 0xFFFF 0xFF	F 10.13	user-defined	Setting range. 0x0000-0x1111	OXIIII	
P16.20 User-defined read address 11 Local address corresponding to user-defined read address 11 User-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address 12 Local address corresponding to user-defined read address corresponding to user-defined read address Setting range: 0x0000-0xFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF		read address			
P16.20 read address 11		10			
Local address corresponding to user-defined read address 11 User-defined P16.22 read address 12 Local address corresponding to user-defined read address 12 User-defined P16.23 Local address corresponding to user-defined read address 2 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0x		User-defined			
P16.21 Local address corresponding to user-defined read address 11 User-defined read address 12 Local address 2 Local address 3 Setting range: 0x0000-0xFFFF 0xFFFF 0x	P16.20	read address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.21 corresponding to user-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address 12 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0x		11			
P16.21 to user-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address 12 User-defined read address Setting range: 0x0000-0xFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF OxFFFF		Localaddress			
P16.21 user-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 P16.23 Setting range: 0x0000-0xFFFF		corresponding			
User-defined read address 11 User-defined read address 12 Local address corresponding to user-defined read address 12 User-defined read address corresponding to user-defined read address 12 User-defined read address 12 User-defined read address 12 User-defined read address 15 User-defined read address 16 User-defined read address 17 User-defined read address 18 User-defined read address 19 User-defined read address 10 User-defined read address	P16.21		Setting range: 0x0000–0xFFFF 0xFFFF	0xFFFF	0
11 User-defined read address 12 Local address corresponding to user-defined read address 12 P16.23 User-defined read address Setting range: 0x0000-0xFFFF OxFFFF					
P16.22 User-defined read address 12 Setting range: 0x0000-0xFFFF 0xFFFF					
P16.22 read address 12 Setting range: 0x0000-0xFFFF 0xFFFF 0xFFFF Local address corresponding to user-defined read address 12 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0x					
P16.23 Local address corresponding to user-defined read address 12 User-defined P16.24 read address Setting range: 0x0000-0xFFFF 0xFFFF 0xFFF					
P16.23 Local address corresponding to user-defined read address 12 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0xFFF	P16.22		Setting range: 0x0000–0xFFFF	0xFFFF	0
Corresponding to user-defined read address 12 User-defined read address 5etting range: 0x0000-0xFFFF 0xFFFF 0xFFF 0xFFFF 0xFFF 0xFFFF 0xFFFF 0xFFFF 0xFFF 0xFFFF 0xFFFF 0xFFFF 0xFFF 0xFFFF 0x					
P16.23 to user-defined read address 12 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF © P16.24 read address Setting range: 0x0000-0xFFFF 0xFFFF ©					
P16.23 user-defined read address 12 User-defined User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF 0xFFF 0xFF					
read address 12 User-defined P16.24 read address Setting range: 0x0000-0xFFFF 0xFFFF ©	P16.23		Setting range: 0x0000–0xFFFF	0xFFFF	0
12 User-defined P16.24 read address Setting range: 0x0000-0xFFFF OxFFFF OxFFFF					
P16.24 User-defined read address Setting range: 0x0000-0xFFFF 0xFFFF ©					
P16.24 read address Setting range: 0x0000-0xFFFF 0xFFFF ©					
	D16 24		Setting range: 0v0000_0vEEEE	Overer	
	r 10.24	13	Setting range. 0x0000-0xrrrr	UXFFFF	

Functio	Name	Danawinkin.	Default	Madic.
n	Name	Description	Default	Modify
	Localaddress			
	corresponding			
P16.25	to	Setting range: 0x0000–0xFFFF	0xFFFF	©
	user-defined			
	read address			
	13			
D4 6 2 6	User-defined	S	0 5555	
P16.26	read address	Setting range: 0x0000–0xFFFF	0xFFFF	0
	14			
	Localaddress			
	corresponding			
P16.27	to	C-11: 0.0000 0	0xFFFF	
P16.27	user-defined	Setting range: 0x0000–0xFFFF	UXFFFF	0
	read address			
	14			
	User-defined			
P16.28	read address	Setting range: 0x0000–0xFFFF	0xFFFF	0
	15			
	Localaddress			
	corresponding			
P16.29	to	Setting range: 0x0000–0xFFFF	0xFFFF	©
1 10.23	user-defined	Section grant and a section of the section grant and a section gra	OXITTI	
	read address			
	15			
D16 20	User-defined read address	C-11'	0.5555	
P16.30	read address	Setting range: 0x0000–0xFFFF	0xFFFF	0
	Local address			
	corresponding			
54604	to			
P16.31	user-defined	Setting range: 0x0000–0xFFFF	0xFFFF	0
	read address			
	16			
	User-defined			
P16.32	write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
	1			

Functio				
n	Name	Description	Default	Modify
P16.33	Local address corresponding to user-defined write address 1	Setting range: 0x0000–0xFFFF	0xFFFF	©
P16.34	User-defined write address 2	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.35	Local address corresponding to user-defined write address 2	Setting range: 0x0000–0xFFFF	0×FFFF	©
P16.36	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.37	Local address corresponding to user-defined write address 3	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.38	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.39	Local address corresponding to user-defined write address 4	Setting range: 0x0000–0xFFFF	OxFFFF	0
P16.40	User-defined write address 5	Setting range: 0x0000–0xFFFF	0xFFFF	0

Functio	Name	Description	Default	Modify
n	Name	Description	Delault	мошту
P16.41	Local address corresponding to user-defined write address 5	Setting range: 0x0000–0xFFFF	0xFFFF	©
P16.42	User-defined write address 6	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.43	Local address corresponding to user-defined write address 6	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.44	User-defined write address 7	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.45	Local address corresponding to user-defined write address 7		0xFFFF	©
P16.46	User-defined write address 8	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.47	Local address corresponding to user-defined write address 8	Setting range: 0x0000–0xFFFF	OxFFFF	©
P16.48	User-defined write address 9	Setting range: 0x0000–0xFFFF	0xFFFF	0

Functio n	Name	Description	Default	Modify
P16.49	Local address corresponding to user-defined write address 9	Setting range: 0x0000–0xFFFF	0xFFFF	©
P16.50	User-defined write address	Setting range: 0x0000-0xFFFF	0xFFFF	0
P16.51	Local address corresponding to user-defined write address 10	Setting range: 0x0000–0xFFFF	0×FFFF	©
P16.52	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.53	Local address corresponding to user-defined write address 11	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.54	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.55	Local address corresponding to user-defined write address 12	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.56	User-defined write address	Setting range: 0x0000–0xFFFF	OxFFFF	0

Functio	Name	Description	Default	Modify
n		-		,
P16.57	Local address corresponding to user-defined write address 13		0xFFFF	©
P16.58	User-defined write address 14	Setting range: 0x0000-0xFFFF	0xFFFF	0
P16.59	Local address corresponding to user-defined write address 14	Setting range: 0x0000–0xFFFF	0xFFFF	©
P16.60	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.61	Local address corresponding to user-defined write address 15	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.62	User-defined write address	Setting range: 0x0000–0xFFFF	0xFFFF	0
P16.63	Local address corresponding to user-defined write address 16	Setting range: 0x0000–0xFFFF	0×FFFF	0

Group P17—Status

Functio n	Name	Description	Default	Modify
P17.00	Set frequency	Displays the present set frequency of the VFD. Setting range: 0.00Hz–P00.03	0.00Hz	•
P17.01	Output frequency	Displays the present output frequency of the VFD. Setting range: 0.00Hz–P00.03	0.00Hz	•
P17.02	Ramp reference frequency	Displays the present ramp reference frequency of the VFD. Setting range: 0.00Hz–P00.03	0.00Hz	•
P17.03	Output voltage	Displays the present output voltage of the VFD. Setting range: 0–1200V	0V	•
P17.04	Output current	Displays the valid value of present output current of the VFD. Setting range: 0.00–500.00A	0.00A	•
P17.05	Motor rotation speed	Displays the present motor rotation speed. Setting range: 0–65535RPM	0rpm	•
P17.06	Torque current	Displays the present torque current of the VFD. Setting range: -300.00–300.00A	0.00A	•
P17.07	Exciting current	Displays the present exciting current of the VFD. Setting range: -300.00–300.00A	0.00A	•
P17.08	Motor power	Displays the present motor power. 100% corresponds to the motor rated power. Setting range: -300.0%-300.0% (of the motor rated frequency)	0.0%	•
P17.09	Motor output torque	Displays the present output torque of the VFD. 100% corresponds to the motor rated torque. Setting range: -250.0%—250.0%	0.0%	•
P17.10	Estimated motor frequency	Used to indicate the estimated motor rotor frequency under the open-loop vector condition. Setting range: 0.00–600.00Hz	0.00Hz	•
P17.11	DC bus voltage	Displays the present DC bus voltage of the VFD. Setting range: 0.0–2000.0V	0.0V	•

Functio	Name	Description	Default	Modify
n		-		-
		Displays the present digital input terminal state of the VFD.		
		Setting range: 0x000–0x7FF		
		Bit 0: DI1		
		Bit 1: DI2		
		Bit 2: DI3		
	Digital input	Bit 3: DI4		
P17.12	terminal	Bit 4: DI5	0x000	•
	state	Bit 5: DI6		
		Bit 6: DI7		
		Bit 7: DI8		
		Bit 8: Reserved		
		Bit 9: Reserved		
		Bit 10: HDI1		
		Displays the present digital output terminal		
		state of the VFD.		
	Digital	Setting range: 0x00–0x1F		
P17.13	output	Bit 0: Reserved	0x00	•
	terminal	Bit 1: Reserved	one c	
	state	Bit 2: Reserved		
		Bit 3: HDO1		
	Di-it-I	Bit 4: RO1		
	Digital	Displays the adjustment on the VFD through		
P17.14	adjustment	the UP/DOWN terminal.	0.00Hz	•
	value	Setting range: 0.00–600.00Hz		
		Indicates the percentage of the rated torque of		
	Torque	the present motor, displaying the torque		
P17.15	reference	reference.	0.0%	•
	value	Setting range: -300.0%–300.0% (of the motor		
		rated current)		
P17.16	Linear speed	Setting range: 0–65535	0	•
		Setting range: 0x0000–0xFFFF		
		Bit0-bit3: Reserved		
	, .	Bit4–bit11: Chip type and manufacturer	Model	
P17.17	ve board	0x00: DSP(TI)	depended	•
	type	0x01–0xFF: Reserved	(0x0000)	
		Bit 12–Bit 15: Reserved	, ,	
		0x0–0xF: Reserved		
P17.18	Count value	Setting range: 0–65535	0	•

Functio n	Name	Description	Default	Modify
P17.19	AI1 input voltage	Displays the Al1 input signal. When Al1 input is the current input, 0/20mA corresponds to 0/10.00V. Setting range: 0.00–10.00V	0.00V	•
P17.20	AI2 input voltage	Displays the Al2 input signal. When Al2 input is the current input, 0/20mA corresponds to -10.00/10.00V. Setting range: 0.00V–10.00V	0.00V	•
P17.21	Al3 input voltage	Displays the AI3 input signal. Setting range: 0.00V–10.00V	0.00V	•
P17.23	HDI1 input frequency	Displays the HDIA input frequency. Setting range: 0.000–50.000kHz	0.000kHz	•
P17.25	PID reference value	Displays the PID reference value. Setting range: -100.0%–100.0%	0.0%	•
P17.26	PID feedback value	Displays the PID feedback value. Setting range: -100.0%–100.0%	0.0%	•
P17.27	Motor power factor	Displays the power factor of the present motor. Setting range: -1.00–1.00	0.00	•
P17.28	Duration of this run	Displays the duration of this run of the VFD. Setting range: 0–65535min	0min	•
P17.29	Present step of simple PLC	Displays the present step of the simple PLC function. Setting range: 0–15	0	•
P17.30	Motor ASR controller Output	Displays the ASR controller output value as a percentage relative to the rated motor torque under the vector control mode. Setting range: -300.0%-300.0%	0.0%	•
P17.31	Open-loop SM pole angle	Displays the initial identification angle of SM. Setting range: 0.0–360.0	0.0	•
P17.32	Phase compensatio n of SM	Displays the phase compensation of SM. Setting range: -180.0–180.0	0.0	•
P17.34	Motor flux linkage	0.0–200.0%	0.0%	•

Functio n	Name	Description	Default	Modify
	Exciting	Displays the exciting current reference value		
P17.35	current	under the vector control mode.	0.00A	•
	reference	 Setting range: -300.00–300.00A		
	Torque	Displays the torque current reference value		
P17.36	current	under the vector control mode.	0.00A	•
	reference	 Setting range: -300.00–300.00A		
P17.38	Output torque	Displays the output torque value. During forward running, the positive value is the motoring state while the negative value is generating state. During reverse running, the positive value is the generating state while the negative value is the motoring state.	0.0N · m	•
		Setting range: -3000.0–3000.0N · m		
P17.39	Motor overload count value	Setting range: 0–65535	0	•
P17.40	Process PID output	Setting range: -100.0%-100.0%	0.0%	•
P17.41	Function code in parameter download error	Setting range: 0.00–99.00	0.00	•
P17.42	Motor control mode	Setting range: 0x000–0x122 Ones place: Control mode 0: Vector 0 1: Vector 1 2: V/F control Tens place: Control status 0: Speed control 1: Torque control 2: Reserved Hundreds place: Motor number 0: Motor 1 1: Motor 2	0x000	•

Functio				
n	Name	Description	Default	Modify
P17.43	Electromotiv e torque	Setting range: 0.0–300.0% (of the motor rated	0.0%	•
	upper limit	current)		
P17.44	Braking torque	Setting range: 0.0–300.0% (of the motor rated current)	0.0%	•
	upper limit Forward			
P17.45	rotation upper-limit frequency in torque control	Setting range: 0.00–600.00Hz	0.00Hz	•
P17.46	Reverse rotation upper-limit frequency in torque control	Setting range: 0.00–600.00Hz	0.00Hz	•
P17.47	Inertia compensation torque	Setting range: -100.0%–100.0%	0.0%	•
P17.48	Friction compensation torque	Setting range: -100.0%–100.0%	0.0%	•
P17.49	Motor pole pairs	Setting range: 0–65535	0	•
P17.50	VFD overload count value	Setting range: 0–65535	0	•
P17.51	Frequency set by A source	Setting range: 0.00-600.00Hz	0.00Hz	•
P17.52	Frequency set by B source	Setting range: 0.00–600.00Hz	0.00Hz	•
P17.53	PID proportional output	Setting range: -100.0%–100.0%	0.0%	•

Functio				
n	Name	Description	Default	Modify
P17.54	PID integral	Setting range: -100.0%-100.0%	0.0%	
F17.34	output		0.076	
	PID	5 100 007 100 007		
P17.55	differential	Setting range: -100.0%—100.0%	0.0%	•
	output			
D47.56	PID present			
P17.56	proportional	Setting range: 0.00–100.00	0.00	•
	gain PID present			
P17.57	integral gain	Setting range: 0.00–10.00s	0.00s	•
	PID present			
P17.58	differential	 Setting range: 0.00–10.00s	0.00s	•
	time			
D17 F0	Actual carrier	Satting 700 000 15 000 15	0.000kHz	
P17.59	frequency	Setting range: 0.000–15.000kHz	0.000KHZ	
	rrequericy			
		Setting range: 0x0000–0xFFFF		
		Bit 0: Running protection flag		
		Bit 1: Running		
		Bit 2: Running direction (1=REV, 0=FWD)		
		Bit 3: Jogging		
		Bit 4: Alarming Bit 5: In fault		
		Bit 6: Running paused		
	FD status	Bit 7: In sleep		
P17.65	word 3	Bit 8: In PoFF state	0x0000	•
		Bit 9: Undervoltage due to transient power		
		loss		
		Bit 10: Overvoltage stall		
		Bit 11: Pre-exciting		
		Bit 12: DC braking		
		Bit 13: Identifying parameters		
		Bit 14: Flux weakening (reserved)		
	CDILI	Bit 15: Reserved		
P17.66	CPU load	Setting range: 0.0–100.0%	0.0%	•
	rate			

Functio n	Name	Description	Default	Modify
P17.67	8k test duration	Setting range: 0–65535	0	•
P17.68	rive board	Setting range: 0x0000–0xFFFF Bit 0–Bit 3: Power range identifying Bit 4: 1PH/3PH identifying 0: 3PH 1: 1PH Bit 5–Bit 15: Reserved	0x0000	•

Group P23—Communication expansion function group

Functio n	Name	Description	Default	Modify
P23.02	Received PZD2	Setting range: 0–31 0: Invalid	0	0
P23.03	Received PZD3	1: Set frequency (0–Fmax, unit: 0.01Hz) 2: PID reference (-1000–1000, in which 1000 corresponds to 100.0%)	0	0
P23.04	Received PZD4	3: PID feedback (-1000–1000, in which 1000 corresponds to 100.0%)	0	0
P23.05	Received PZD5	4: Torque setting (-3000–+3000, in which 1000 corresponds to 100.0% of the motor rated	0	0
P23.06	Received PZD6	current) 5: Setting of the upper limit of forward running	0	0
P23.07	Received PZD7	frequency (0–Fmax, unit: 0.01Hz) 6: Setting of the upper limit of reverse running	0	0
P23.08	Received PZD8	frequency (0–Fmax, unit: 0.01Hz) 7: Upper limit of the electromotive torque (0–	0	0
P23.09	Received PZD9	3000, in which 1000 corresponds to 100.0% of the motor rated current)	0	0
P23.10	Received PZD10	8: Upper limit of braking torque (0–3000, in which 1000 corresponds to 100% of the motor	0	0
P23.11	Received PZD11	rated current) 9: Virtual input terminal command (0x000–	0	0
P23.12	Received PZD12	0x7FF) 10: Virtual output terminal command (0x000– 0x01F) 11: Voltage setting special for V/F separation	0	0

Functio				
n	Name	Description	Default	Modify
		(0–1000, in which 1000 corresponds to 100.0%		
		of the motor rated voltage)		
		12: AO setting 1 (0–1000, in which 1000		
		corresponds to 100.0%)		
		13: AO setting 2 (-1000–1000, in which 1000		
		corresponds to 100.0%)		
		14–18: Reserved		
		19: Function parameter mapping (PZD2–		
		PZD12 correspond to P14.49–P14.59) 20–		
		31: Reserved		
P23.13	Sent PZD2	Setting range: 0–32	0	0
P23.14	Sent PZD3	0: Invalid	0	0
P23.15	Sent PZD4	1: Running frequency (×100, Hz)	0	0
		2: Set frequency (×100, Hz)	0	0
P23.16	Sent PZD5	3: Bus voltage (×10, V)	_	
P23.17	Sent PZD6	4: Output voltage (×1, V)	0	0
P23.18	Sent PZD7	5: Output current (×100, A)	0	0
P23.19	Sent PZD8	6: Actual output torque (×10, %)	0	0
P23.20	Sent PZD9	7: Actual output power (×10, %)	0	0
P23.21	Sent PZD10	8: Rotation speed of running (×1, RPM)	0	0
P23.22	Sent PZD11	9: Linear speed of running (×1, m/s)	0	0
		10: Ramp reference frequency (×100, Hz)		
		11: Fault code		
		12: Al1 input (×100, V)		
		13: Al2 input (×100, V)		
		14: Al3 input (× 100, V)		
		15: Reserved		
		16: HDI1 frequency value (×100, kHz)		
		17: Reserved		
P23.23	Sent PZD12	18: Terminal input state	0	0
		19: Terminal output status		
		20: PID reference (×100, %)		
		21: PID feedback (×100, %)		
		22–26: Reserved		
		27: VFD status word 2		
		28–31: Reserved		
		32: Function parameter mapping (PZD2–		
		PZD12 correspond to P14.60-P14.70)		

Group P24—Communication expansion function group

Functio	Name	Description	Default	Modify
n		·		,
		Setting range: 0–15		
		0: PROFINET		
		1: EtherCAT		
	Expansion	2: Reserved		
	card	3: EtherNet IP		_
P24.00	protocol	4: Modbus TCP	0	0
	selection	5: EtherNet UDP		
		6: PROFINET + EtherNet UDP		
		7: EtherCAT + EtherNet UDP		
		8–14: Reserved		
		15: No communication expansion card		
	Ethernet			
P24.02	monitoring	Setting range: 0–255	192	0
	card IP			
	address 1			
	Ethernet	Setting range: 0–255	168	
P24.03	monitoring			0
	card IP			
	address 2			
	Ethernet			
P24.04	monitoring	Setting range: 0–255	0	0
	card IP			
	address 3			
	Ethernet			
P24.05	monitoring	Setting range: 0–255	1	0
	card IP			
	address 4			
	Ethernet			
P24.06	monitoring	Setting range: 0–255	255	0
	card subnet			
	mask 1			
	Ethernet			
P24.07	monitoring	Setting range: 0–255	255	0
	card subnet			
	mask 2			

Functio n	Name	Description	Default	Modify
	Ethernet			
P24.08	monitoring card subnet	Setting range: 0–255	255	0
	mask 3			
	Ethernet			
P24.09	monitoring	Sotting range: 0. 3EE		
P24.09	card subnet	Setting range: 0–255	0	0
	mask 4			
	Ethernet			
	card			
P24.14	monitoring	Setting range: 0x0000–0xFFFF	0x0000	0
	variable			
	address 1			
	Ethernet			
	card			
P24.15	monitoring	Setting range: 0x0000–0xFFFF	0x0000	0
	variable			
	address 2			
	Ethernet			
	card			
P24.16	monitoring	Setting range: 0x0000–0xFFFF	0x0000	0
	variable			
	address 3			
	Ethernet			
	card			
P24.17	monitoring	Setting range: 0x0000–0xFFFF	0x0000	0
	variable			
	address 4			
	Ethernet			
	card			
P24.18	monitoring	Setting range: 0x0000-0xFFFF	0x0000	0
	variable			
	address 5			
	Ethernet			
	card			
P24.19	monitoring	Setting range: 0x0000–0xFFFF	0x0000	0
	variable			
	address 6			

Functio				
n	Name	Description	Default	Modify
P24.20	Ethernet card monitoring variable address 7	Setting range: 0x0000–0xFFFF	0x0000	0
P24.21	Ethernet card monitoring variable address 8	Setting range: 0x0000–0xFFFF	0x0000	0
P24.24	Time to identify expansion card	Setting range: 0.0–600.0s Note: The function is invalid when the value is 0.0.	0.0s	0
P24.27	Expansion card communicat ion timeout time	Setting range: 0.0–600.0s Note: The function is invalid when the value is 0.0.	0.0s	0
P24.30	EtherCAT communicat ion timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0s	0
P24.31	PROFINET communicat ion timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0s	0
P24.32	EtherNet IP communicat ion timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0s	0
P24.34	Modbus TCP communicat ion timeout time	Setting range: 0.0–60.0s Note: The function is invalid when the value is 0.0.	5.0s	0
P24.37	Industrial Ethernet communicat ion card IP address 1	Setting range: 0–255	192	©

Functio n	Name	Description	Default	Modify
P24.38	Industrial Ethernet communicat ion card IP address 2	Setting range: 0–255	168	0
P24.39	Industrial Ethernet communicat ion card IP address 3	Setting range: 0–255	0	0
P24.40	Industrial Ethernet communicat ion card IP address 4	Setting range: 0–255	20	©
P24.41	Industrial Ethernet communicat ion card subnet mask	Setting range: 0–255	255	©
P24.42	Industrial Ethernet communicat ion card subnet mask 2	Setting range: 0–255	255	©
P24.43	Industrial Ethernet communicat ion card subnet mask 3	Setting range: 0–255	255	0
P24.44	Industrial Ethernet communicat ion card subnet mask 4	Setting range: 0–255	0	©

Functio n	Name	Description	Default	Modify
	Saving			
	EtherCAT	Setting range: 0–1		
P24.49	written	0: No	0	0
	function	1: Yes		
	codes			
		Setting range: 0–5		
		0: Reserved		
	EtherCAT DC	1: Reserved		
P24.50	synchronizat	2: 1ms	0	0
	ion cycle	3: 2ms		
		4: 4ms		
		5: 8ms		
	EtherCAT			
P24.51	slave node	Setting range: 0x0000–0xFFFF	0xFFFF	0
	address			

Group P29—Expansion card status

Functio n	Name	Description	Default	Modify
P29.00	Expansion card type	Setting range: 0–63 0: No card 1–35: Reserved 36: All-in-one expansion card—PROFINET communication card 37–40: Reserved 41: All-in-one expansion card—EtherCAT communication card 42: Reserved 43: All-in-one expansion card—EtherNet IP communication card 44: All-in-one expansion card—Modbus TCP communication card 45: All-in-one expansion card—Ethernet communication card 46: All-in-one expansion card—PROFINET + Ethernet communication card 47: All-in-one expansion card—EtherCAT + Ethernet communication card 48–63: Reserved	0	•

Functio	Name	Description	Default	Modify
n		Description .	Deraute	ca.i.y
	Expansion			
P29.03	card software	Setting range: 0.00–655.35	0.00	•
	version			
	Present			
	value of	 Setting range: 0–65535		
P29.17	Ethernet	Note: Monitoring variables 1−4 are used for	0	•
	monitoring	the control board.		
	variable 1			
	Present			
	value of			
P29.18	Ethernet	Setting range: 0–65535	0	•
	monitoring			
	variable 2			
	Present			
	value of			
P29.19	Ethernet	Setting range: 0–65535	0	•
	monitoring			
	variable 3			
	Present			
	value of			
P29.20	Ethernet	Setting range: 0–65535	0	•
	monitoring			
	variable 4			
	Present			
	value of	Setting range: 0–65535		
P29.21	Ethernet	Note: Monitoring variable 5−8 are used for	0	•
	monitoring	the drrive board.		
	variable 5			
	Present			
	value of			
P29.22	Ethernet	Setting range: 0–65535	0	•
	monitoring			
	variable 6			
	Present			
P29.23	value of Ethernet	Sotting range: 0. 65525		
P29.23	monitoring	Setting range: 0–65535	0	
	variable 7			
	- ariable /	<u> </u>		l

Functio n	Name	Description	Default	Modify
P29.24	Present value of Ethernet monitoring variable 8	Setting range: 0–65535	0	•
P29.32	EtherCAT control word	Setting range: 0x0000–0xFFFF	0x0000	•
P29.33	EtherCAT status word	Setting range: 0x0000–0xFFFF	0x0000	•

Group P34—Parameters of motor

Functio n	Name	Description	Default	Modify
P34.00	Type of motor 2	Setting range: 0–1 0: Asynchronous motor (AM) 1: Permanent magnet synchronous motor	0	0
P34.01	Rated power of AM 2	Setting range: 0.1–3000.0kW	Model depended	0
P34.02	Rated frequency of AM 2	Setting range: 0.01Hz–P00.03	50.00Hz	0
P34.03	Rated speed of AM 2	Setting range: 1–60000RPM	Model depended	0
P34.04	Rated voltage of AM 2	Setting range: 0–1200V	Model depended	0
P34.05	Rated current of AM 2	Setting range: 0.08–600.00A	Model depended	0
P34.06	Stator resistance of AM 2	Setting range: 0.001 – 65.535Ω	Model depended	0
P34.07	Rotor resistance of AM 2	Setting range: 0.001 – 65.535Ω	Model depended	0

Functio n	Name	Description	Default	Modify
P34.08	Leakage inductance of AM 2	Setting range: 0.1–6553.5mH	Model depended	0
P34.09	Mutual inductance of AM 2	Setting range: 0.1–6553.5mH	Model depended	0
P34.10	No-load current of AM 2	Setting range: 0.01–655.35A	Model depended	0
P34.11	Magnetic saturation coefficient 1 of iron core of AM 2	Setting range: 0.0–100.0%	80.0%	0
P34.12	Magnetic saturation coefficient 2 of iron core of AM 2	Setting range: 0.0–100.0%	68.0%	0
P34.13	Magnetic saturation coefficient 3 of iron core of AM 2	Setting range: 0.0–100.0%	57.0%	0
P34.14	Magnetic saturation coefficient 4 of iron core of AM 2	Setting range: 0.0–100.0%	40.0%	0
P34.15	Rated power of SM 2	Setting range: 0.1–3000.0kW	Model depended	0
P34.16	Rated frequency of SM 2	Setting range: 0.01Hz–P00.03	50.00Hz	0
P34.17	Number of pole pairs of SM 2	Setting range: 1–128	2	0

Functio n	Name	Description	Default	Modify
P34.18	Rated voltage of SM 2	Setting range: 0–1200V	Model depended	0
P34.19	Rated current of SM 2	Setting range: 0.08–600.00A	Model depended	0
P34.20	Stator resistance of SM 2	Setting range: 0.001–65.535Ω	Model depended	0
P34.21	Direct-axis inductance of SM 2	Setting range: 0.01–655.35mH	Model depended	0
P34.22	Quadrature- axis inductance of SM 2	Setting range: 0.01–655.35mH	Model depended	0
P34.23	Counter-emf constant of SM 2	Setting range: 0–10000	300	0
P34.24	Initial pole position of SM 2	Setting range: 0x0000–0xFFFF	0x0000	•
P34.25	Frequency percentage for SM 2 counter-emf identifying	Setting range: 5.0%–100.0%	60%	©

Functio	Name	Description	Default	Modify
n	Name	Description	Delault	Mourry
P34.26	Overload protection selection of motor 2	Setting range: 0–2 0: No protection 1: Common motor (with low-speed compensation) As the cooling effect of a common motor is degraded at low speed running, the corresponding electronic thermal protection value needs to be adjusted properly, the low compensation indicates lowering the overload protection threshold of the motor whose running frequency is lower than 30Hz. 2: Frequency-variable motor (without low-speed compensation) The heat dissipation function for a variable-frequency motor is not impacted by the rotation speed, and therefore it is not necessary to adjust the protection value at low speed running.	2	©
P34.27	Overload protection coefficient of motor 2	Specifies the motor overload protection coefficient. A small motor overload protection coefficient indicates a great overload multiplication (M). When M=116%, protection is performed after motor overload lasts for 1 hour; when M=150%, protection is performed after motor overload lasts for 12 minutes; when M=180%, protection is performed after motor overload lasts for 5 minutes; when M=200%, protection is performed after motor overload lasts for 60 seconds; and when M≥400%, protection is performed immediately. Setting range: 20.0%–150.0%	100.0%	0
P34.28	Power display calibration coefficient of motor 2	Used to adjust the power display value of motor 1. However, it does not affect the control performance of the VFD. Setting range: 0.00–3.00	1.00	0

Functio n	Name	Description	Default	Modify
P34.29	Parameter display selection of motor 2	Setting range: 0–1 0: Display by motor type. In this mode, only parameters related to the present motor type are displayed. 1: Display all. In this mode, all the motor parameters are displayed.	0	0
P34.30	System inertia of motor 2	Setting range: 0.001–65.535kg · m²	0.001 kg · m²	0
P34.31	Parameter model calculation of motor 2	Setting range: 0–1 0: Disable 1: Enable	0	0
P34.32	Power factor of AM 2	Setting range: 0.00–1.00	0.85	0
P34.33	High word of rated speed of AM 2	Setting range: 0–3010kRPM	0 kRPM	0
P34.34	Iron core saturation coefficient 1 of AM 2	Setting range: 0.0–200.0%	125.0%	0
P34.35	Iron core saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	125.0%	0
P34.36	Mutual inductance saturation coefficient 1 of AM 2	Setting range: 0.0–200.0%	88.0%	0
P34.37	Mutual inductance saturation coefficient 2 of AM 2	Setting range: 0.0–200.0%	88.0%	0

Functio n	Name	Description	Default	Modify
P34.38	Mutual inductance flux weakening coefficient 1 of AM 2	Setting range: 0.0–200.0%	112.5%	0
P34.39	Mutual inductance flux weakening coefficient 2 of AM 2	Setting range: 0.0–200.0%	117.6%	0
P34.40	Mutual inductance flux weakening coefficient 3 of AM 2	Setting range: 0.0–200.0%	122.8%	0
P34.41	Mutual inductance flux weakening coefficient 4 of AM 2	Setting range: 0.0–200.0%	125.0%	0

Group P35—Vector control of motor

Functio n	Name	Description	Default	Modify
P35.00	Speed-loop proportional gain 1 of motor 2	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	0
P35.01		Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200s	0

Functio n	Name	Description	Default	Modify
P35.02	Motor 2 switching low-point frequency	Setting range: 0.00Hz–P03.05 Note: Applicable only to vector control mode.	5.00Hz	0
P35.03	Speed-loop proportional gain 2 of motor 2	Setting range: 0.0–200.0 Note: Applicable only to vector control mode.	20.0	0
P35.04	Speed-loop integral time 2 of motor 2	Setting range: 0.000–10.000s Note: Applicable only to vector control mode.	0.200s	0
P35.05	Switching high-point frequency of motor 2	Setting range: P03.02–P00.03(Hz) Note: Applicable only to vector control mode.	10.00Hz	0
P35.06	Speed-loop output filter of motor 2	Setting range: 0–8 (corresponding to 0–28/10ms)	0	0
P35.07	Electromotiv e slip compensatio n coefficient of vector control for motor 2	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100%	0
P35.08	Braking slip compensatio n coefficient of vector control for motor 2	Slip compensation coefficient is used to adjust the slip frequency of the vector control and improve the speed control accuracy of the system. Adjusting the parameter properly can control the speed steady-state error. Setting range: 50%–200%	100%	0
P35.11	Torque setting method selection of motor 2	Setting range: 0–15 0: Set by P35.12 1: Al1 2: Al2 3: Al3	0	0

Functio				
n	Name	Description	Default	Modify
		4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.		
P35.12	Torque set through keypad of motor 2	Setting range: -300.0%-300.0% Note: The value is relative to the motor rated current.	20.0%	0
P35.13	Torque reference filter time of motor 2	Setting range: 0.000–10.000s	0.010s	0
P35.14	Setting source of forward rotation frequency upper limit in torque control of motor 2	Setting range: 0–15 0: Set by P35.16 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication	0	0

Functio n	Name	Description	Default	Modify
P35.15	Setting source of reverse rotation frequency upper limit in torque control of motor 2	15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency. Setting range: 0–15 0: Set by P35.17 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: For setting 1 and above, 100% corresponds to the max. frequency.	0	0
P35.16	Forward rotation frequency upper limit set through keypad in torque control of motor 2	Specifies the frequency limit when P03.14=0. Setting range: 0.00Hz–P00.03	50.00Hz	0
P35.17	Reverse rotation frequency upper limit set through keypad in torque control of motor 2	Specifies the frequency limit when P35.15=0. Setting range: 0.00Hz–P00.03	50.00Hz	0

Functio				
n	Name	Description	Default	Modify
P35.18	Setting source of electromotiv e torque upper limit for motor 2	Setting range: 0–15 0: Set by P35.20 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	0
P35.19	Setting source of braking torque upper limit for motor 2	Setting range: 0–15 0: Set by P35.21 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–9: Reserved 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved Note: 100% corresponds to the motor rated current.	0	0
P35.20	Electromotiv e torque upper limit set through keypad for motor 2	Specifies the torque limit when P03.18=0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0%	0

Functio n	Name	Description	Default	Modify
P35.21	Braking torque upper limit set through keypad for motor 2	Specifies the torque limit when P03.19=0. Setting range: 0.0–300.0% Note: The value is relative to the motor rated current.	180.0%	0
P35.22	Weakening coefficient in constant power zone for motor 2	Used when the AM is in flux-weakening control. Setting range: 0.0–200.0%	100.0%	0
P35.23	Lowest weakening point in constant power zone for motor 2	Setting range: 5%–100%	5%	0
P35.24	Max. voltage limit on motor 2	Specifies the max. VFD output voltage, which is a percentage of the motor rated voltage. Set the value according to onsite conditions. Setting range: 0.0–120.0%	100.0%	0
P35.25	Pre-exciting time of motor 2	Specifies the pre-exciting time. Pre-exciting is performed for the motor when the VFD starts up. A magnetic field is built up inside the motor to improve the torque performance during the start process. Setting range: 0.000–10.000s Note: Pre-excitation can improve the start-up capability of AM with loads. For an AM, set 0 to disable the pre-excitation process. For an SM, if P13.01 is set to an enabling option, the pre-excitation process is directly skipped.	0.300s	0

Functio	Nome	Description	Default	Modify
n	Name	Description	Detault	моану
	Flux-weaken			
	ing			
P35.26	proportional	Setting range: 0–8000	1000	0
	gain of			
	motor 2			
	Speed			
	display	Cautian and a 1		
D25 27	selection in	Setting range: 0–1		
P35.27	vector	0: Display the actual value	0	0
	control for	1: Display the set value		
	motor 2			
	Static			
	friction			
P35.28	compensatio	Setting range: 0.0–100.0%	0.0%	0
	n coefficient			
	of motor 2			
	Static	Setting range: 0.50Hz–P35.31		
	friction			
P35.29	correspondi		1 001 1-	0
P35.29	ng frequency		1.00Hz	
	point of			
	motor 2			
	High speed			
	friction			
P35.30	compensatio	Setting range: 0.0–100.0%	0.0%	0
	n coefficient			
	of motor 2			
	High speed			
	friction			
P35.31	correspondi	Sotting range: B2E 20, B00 02/Hz)	50.00Hz	0
F33.31	ng frequency	Setting range: P35.29–P00.03(Hz)	30.00HZ	
	point of			
	motor 2			
	Enabling	Satting range: 0.1		
P35.32	torque	Setting range: 0–1	0	0
F33.34	control of	0: Disable		
	motor 2	1: Enable		

Functio n	Name	Description	Default	Modify
P35.33	Flux-weaken ing integral gain of motor 2	Setting range: 0.0–300.0%	30.0%	0
P35.35	Control mode optimization selection of motor 2	Setting range: 0x0000–0x1111 Ones place: Torque command selection 0: Torque current reference 1: Torque current reference Tens place: Reserved Hundreds place: indicates whether to enable speed-loop integral separation 0: Disable 1: Enable Thousands place: Reserved	0x0000	0
P35.36	Speed-loop differential gain of motor 2	Setting range: 0.00–10.00s	0.00s	0
P35.43	Motor 2 inertia identificatio n torque	0.0–100.0%	10.0%	0
P35.44	Enabling motor 2 inertia identificatio	0–1 0: Disable 1: Enable	0	0
P35.45	Max. flux weakening current of SM 2	Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated current.	100.0%	©
P35.46	Vector control optimization parameter of motor 2	Setting range: 0x0000–0x0FFF Bit 0: Enable voltage feedforward compensation (valid in FVC) Bit 1: Enable axis-d voltage cross decoupling (valid in FVC) Bit 2: Enable axis-q voltage cross decoupling (valid in FVC) Bit 3: Enable closed-loop disturbance	0x0037	©

Functio				
Functio n	Name	Description	Default	Modify
		feedforward compensation		
		Bit 4: Axis-q voltage restriction selection		
		0: Restricted to 1.2 times the motor rated		
		voltage		
		1: Restricted to axis-d voltage		
		Bit 5: Mutual inductance self-adaptation		
		enabling		
		0: Invalid		
		1: Enable		
		Bit 6: Direct-axis inductance (Ld) saturation		
		enabling		
		0: Invalid		
		1: Enable (suitable for synchronous reluctance		
		motors or synchronous motors where		
		inductance varies significantly with current)		
		Bit 7: Quadrature-axis inductance (Lg)		
		saturation enabling		
		0: Invalid		
		1: Enable (suitable for synchronous reluctance		
		motors or synchronous motors where		
		inductance varies significantly with current)		
		Bit 8: Torque control current optimization		
		enabling		
		0: Invalid		
		Enable (suitable for low torque tension		
		control applications)		
		Bit 9: Current loop optimization enabling		
		0: Invalid		
		1: Enable (suitable for low carrier frequency		
		ratio applications)		
		Bit 10: Speed loop optimization enabling 0: Invalid		
		1: Enable (requiring inertia identification)		
		Bit 11–Bit 15: Reserved		
	Closed-loop			
	speed			_
P35.49	observation	Setting range: 1.0–200.0	10.0	0
	band width			
	of motor 2			

Functio n	Name	Description	Default	Modify
P35.50	Vector control energy-savin g mode selection of motor 2	Setting range: 0–3 0: Invalid 1: Max. efficiency (recommended) 2: Optimal power factor 3: MTPA	0	©
P35.51	Energy-savin g optimization coefficient of motor 2	Setting range: 25.0%–400.0%	100.0%	0
P35.54	Current-loop band width of motor 2	Setting range: 0–2000 Note: P35.54 is a current loop PI regulation parameter. It impacts the dynamic response speed and control accuracy of the system. Generally, you do not need to modify it. Applicable to SVC 0 (P00.00=0) and SVC 1 (P00.00=1).	400	0
P35.58	Quick exciting current of motor 2	0.0–200.0%	0.0%	©
P35.65	Current-loop integral coefficient after autotuning of motor 2	Setting range: 0–65535	0	0
P35.68	Upper limit frequency bias value in torque control of motor 2	Setting range: 0.00Hz–P00.03	0.00Hz	0

Functio n	Name	Description	Default	Modify
P35.69	Upper limit frequency ACC/DEC selection in torque control of motor 2	Setting range: 0–4 0: No limit on acceleration or deceleration 1: ACC/DEC time 1 2: ACC/DEC time 2 3: ACC/DEC time 3 4: ACC/DEC time 4	0	0

Group P36—V/F control of motor

Functio n	Name	Description	Default	Modify
P36.00	V/F curve setting of motor 2	Specifies the V/F curve of motor 1 to meet the needs of different loads. Setting range: 0–5 0: Straight-line V/F curve, applicable to constant torque loads 1: Multi-point V/F curve 2: Torque-down V/F curve (power of 1.3) 3: Torque-down V/F curve (power of 2.0) Curves 2 – 4 are applicable to the torque loads such as fans and water pumps. You can adjust according to the characteristics of the loads to achieve best performance. 5: Customized V/F (V/F separation); in this mode, V can be separated from F and F can be adjusted through the frequency setting channel set by P00.06 or the voltage setting channel set by P36.13 to change the characteristics of the curve.	0	©
P36.01	Torque boost of motor 2	Setting range: 0.0–10.0% Note: 100% corresponds to the rated voltage of motor 1. When the value is set to 0.0%, the VFD uses automatic torque boost.	0.0%	0
P36.02	Torque boost cut-off of motor 2	Setting range: 0.0–50.0% Note: 100% corresponds to the rated frequency of motor 1.	20.0%	0

Functio	Name	Description	Default	Modify
n	Hame	Description	Delaute	cu.ry
P36.03	V/F frequency point 1 of motor 2	When P36.00=1 (multi-dot V/F curve), you can set the V/F curve through P36.03–P36.08. Setting range: 0.00–P36.05(Hz) Note: V1≤V2≤V3, f1≤f2≤f3 Too high voltage for low frequency will cause motor overheat or damage and cause VFD overcurrent stall or overcurrent protection.	0.00Hz	0
P36.04	V/F voltage point 1 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0%	0
P36.05	V/F frequency point 2 of motor 2	Setting range: P36.03–P36.07 (Hz) Note: See the description for P36.03.	0.00Hz	0
P36.06	V/F voltage point 2 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0%	0
P36.07	V/F frequency point 3 of motor 2	Setting range: P36.05–P34.02 (Hz, Rated frequency of AM 2) or P36.05–P34.16 (Hz, Rated frequency of SM 2) Note: See the description for P36.03.	0.00Hz	0
P36.08	V/F voltage point 3 of motor 2	Setting range: 0.0–110.0% Note: See the description for P36.03. 100% corresponds to the rated voltage of motor 1.	0.0%	0
P36.09	V/F slip compensatio n gain of motor 2	Used to compensate for the motor rotating speed change caused by load change in the space voltage vector mode, and thus improve the rigidity of the mechanical characteristics of the motor. Setting range: 0.0–200.0%	100.0%	0
P36.10	Low- frequency oscillation control factor of motor 2	In space voltage vector control mode, the motor, especially the large-power motor, may experience current oscillation at certain frequencies, which may cause unstable motor running, or even VFD overcurrent. You can adjust the two function parameters properly	10	0

Functio n	Name	Description	Default	Modify
P36.11	High-freque ncy oscillation control factor of motor 2	to eliminate such phenomenon. Setting range: 0–100	10	0
P36.12	Oscillation control threshold of motor 2	Setting range: 0.00Hz–P00.03	30.00Hz	0
P36.13	Voltage setting channel selection for motor 2	Setting range: 0–7 0: Set by P36.14 1: Al1 2: Al2 3: Al3 4: Reserved 5: High-speed pulse HDI1 6–7: Reserved 8: Multi-step speed running 9: PID control 10: Modbus/Modbus TCP communication 11: Reserved 12: Ethernet communication 13: Reserved 14: EtherCAT/PROFINET/EtherNet IP communication 15: Reserved	0	0
P36.14	Voltage set through keypad for motor 2	The function code is the voltage digital setting when "keypad" is selected as the voltage setting channel. Setting range: 0.0–100.0%	100.0%	0
P36.15	Voltage increase time of motor 2	Voltage increase time means the time needed for the VFD to accelerate from min. output voltage to the max. output frequency. Setting range: 0.0–3600.0s	5.0s	0
P36.16	Voltage decrease time of motor 2	Voltage decrease time means the time needed for the VFD to decelerate from the max. output frequency to min. output voltage. Setting range: 0.0–3600.0s	5.0s	0

Functio n	Name	Description	Default	Modify
P36.17	Max. output voltage of motor 2	Specifies the upper limit of output voltage. Setting range: P36.18–100.0% Note: 100% corresponds to the motor rated voltage.	100.0%	0
P36.18	Min. output voltage of motor 2	Specifies the lower limit of output voltage. Setting range: 0.0%–P36.17 Note: 100% corresponds to the motor rated voltage.	0.0%	©
P36.19	Weakening coefficient in constant power zone for motor 2	Setting range: 1.00–1.30	1.00	0
P36.20	Pull-in current 1 in V/F control for SM 2	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is lower than the frequency specified by P36.22. Setting range: -100.0%—100.0% Note: 100% corresponds to the motor rated current.	30.0%	0
P36.21	Pull-in current 2 in V/F control for SM 2	When the SM VF control mode is enabled, the function code is used to set the reactive current of the motor when the output frequency is greater than the frequency specified by P36.22. Setting range: -100.0%—100.0% Note: 100% corresponds to the motor rated current.	10.0%	0
P36.22	V/F control pull-in current frequency switching point for SM 2	When the SM VF control mode is enabled, the function code is used to set the frequency threshold for the switching between pull-in current 1 and pull-in current 2. Setting range: 0.0–200.0% Note: 100% corresponds to the motor rated frequency.	20.0%	0

Functio	Marra	Baranianian.	Defeate	M - J'C -
n	Name	Description	Default	Modify
P36.23	V/F control reactive current closed-loop proportional coefficient for SM 2	When the SM VF control mode is enabled, the function code is used to set the proportional coefficient of reactive current closed-loop control. Setting range: 0–500	50	0
P36.24	V/F control reactive current closed-loop integral time for SM 2	When the SM VF control mode is enabled, the function code is used to set the integral time of reactive current closed-loop control. Setting range: 0–300	30	0
P36.25	V/F control reactive closed-loop output limit for SM 2	Setting range: 0–16000	8000	0
P36.26	Enabling IF modefor AM 2	Setting range: 0–1	0	0
P36.27	Current setting in IF modefor AM 2	Setting range: 0.0–200.0%	120.0%	0
P36.28	Proportional coefficient in IF mode for AM 2	Setting range: 0–5000	350	0
P36.29	Integral coefficient in IF mode for AM 2	Setting range: 0–5000	150	0
P36.30	Frequency threshold for switching off IF mode for motor 2	Setting range: 0.00Hz–P36.31	10.00Hz	0

Functio n	Name	Description	Default	Modify
P36.31	End frequency point for switching off IF mode for motor 2	Setting range: P36.30–P00.03(Hz)	25.00Hz	0
P36.32	energy- saving mode	Setting range: 0-3 0: Disable (Energy saving is invalid) 1: Max. efficiency 2: Optimal power factor 3: Max. ratio of torque to current	0	0
P36.33	V/F control energy- saving optimization coefficient for AM 2	Setting range: 25.0%–400.0%	100.0%	0

ASTOR Sp. z o.o. ul. Smoleńsk 29 31-112 Kraków, Poland www.astor.com.pl produkty@astor.com.pl